网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
铝合金汽车悬挂支撑臂成形工艺仿真分析与缺陷优化
英文标题:Simulation analysis of forming process and defect optimization for aluminum alloy automobile suspension support arm
作者:曹腾1 章科举2 陈钰金2 金康2 3 张波3 
单位:1. 安徽望锦汽车部件有限公司 安徽 宣城 242399 2. 中国机械总院集团北京机电研究所有限公司 北京 100083 3. 中机精密成形产业技术研究院(安徽)股份有限公司 安徽 芜湖 241000 
关键词:铝合金 悬挂支撑臂 折叠缺陷 锻造工艺 模具优化 
分类号:TG316
出版年,卷(期):页码:2025,50(5):57-63
摘要:

针对某型汽车铝合金空气悬挂支撑臂模锻成形过程中出现的折叠缺陷,结合数值仿真与生产工艺优化开展了研究。通过Forge软件模拟锻造成形过程,分析金属流动特性发现,折叠缺陷成因主要为模具过渡圆角半径过小及坯料摆放位置不当引发的金属回流与对冲。为此提出模具圆角优化和调整坯料摆放位置两个优化方案,仿真结果表明:将分模面处的模具圆角半径由R3 mm增加至R8.5 mm并加宽桥部,可以使折叠区域转移至飞边;调整坯料摆放位置,使其沿模具型腔曲率倾斜,可以优化金属流动路径,消除型腔内的金属汇流,从而完全消除折叠缺陷。最后,经实际生产验证,优化后锻件质量得到显著提升,为复杂铝合金部件的锻造工艺改进提供了有效方法。

For the folding defects that occurred during the die forging process of  aluminum alloy air suspension support arm for a certain type of automobile, combining numerical simulation and production process optimization, the forging forming process was simulated by Forge software, and the metal flow characteristics were analyzed. Then, it was revealed that the main cause of  folding was the metal reflux and hedging caused by the small transition fillet radius of die and the improper placement of billet, and two optimization schemes were proposed, namely, optimizing the die fillet and adjusting the placement position of billet. The simulation results show that increasing the die fillet radius at the parting surface from R3 mm to R8.5 mm  and widening the bridge can transfer the folding area to the flash. Adjusting the placement position of billet to make it tilt along the curvature of die cavity can optimize the metal flow path and eliminate the metal confluence in the cavity, which can completely eliminate the folding defects. Finally,verified by the actual production,the quality of forgings is significantly improved,which provides an effective method for improving the forging process of complex aluminum alloy parts.

基金项目:
作者简介:
作者简介:曹腾(1988-),男,学士,工程师,E-mail:caoteng@zhongdinggroup.com;通信作者:章科举(1997-),男,硕士研究生,E-mail:zhkeju@foxmail.com
参考文献:


[1]Ma F W, Wang G W, Yang M,et al. Lightweight design of CFRP automobile tailgate based on multi-step optimization
[R]. SAE Technical Paper, 2019.


 


[2]范子杰,桂良进,苏瑞意. 汽车轻量化技术的研究与进展
[J].汽车安全与节能学报,2014,5(1):1-16.

 

Fan Z J, Gui L J, Su R Y. Research and development of automotive lightweight technology
[J]. Journal of Automotive Safety and Energy, 2014,5(1): 1-16.

 


[3]彭福泰,丁旺才.车辆空气悬挂系统动力学研究
[J].机械制造与自动化,2018,47(4):165-171.

 

Peng F T, Ding W C. Study of dynamics of vehicle air-spring suspension system
[J]. Machine Building & Automation, 2018, 47(4): 165-171.

 


[4]张志飞,陈仁,徐中明,等.面向多目标的汽车悬架控制臂拓扑优化研究
[J].机械工程学报,2017,53(4):114-121.

 

Zhang Z F, Chen R, Xu Z M, et al. Research on multi-objective topology optimization of vehicle suspension control arm
[J]. Journal of Mechanical Engineering, 2017, 53(4): 114-121.

 


[5]张阳,张同庆,刘磊,等.基于BCC点阵填充的控制臂结构优化
[J].机械设计,2024,41(6):40-46.

Zhang Y, Zhang T Q, Liu L, et al. Structure optimization of control arm based on BCC lattice filling
[J]. Journal of Machine Design, 2024,41(6): 40-46.

 


[6]周礼菊,孙如梦,高振伟,等.基于CAE的汽车铝合金控制臂锻造成形工艺
[J].锻压技术,2024,49(3):1-7.

 

Zhou L J, Sun R M, Gao Z W, et al. Forging process on automotive aluminum alloy control arm based on CAE
[J]. Forging & Stamping Technology, 2024, 49(3): 1-7.

 


[7]陈钰金,邵长斌,李思奇,等.锻造铝合金控制臂弯曲工艺分析与优化
[J].锻压技术,2023,48(6):17-21.

 

Chen Y J, Shao C B, Li S Q, et al. Analysis and optimization on bending process for forging aluminum alloy control arm
[J]. Forging & Stamping Technology, 2023,48(6): 17-21.

 


[8]张涛,蒋荣超,刘大维,等.基于Kriging模型的悬架控制臂轻量化多目标优化
[J].机械设计,2019,36(S2):28-32.

 

Zhang T, Jiang R C, Liu D W, et al. Multi-objective optimization for lightweight of suspension control arm based on Kriging model
[J]. Journal of Machine Design, 2019, 36 (S2): 28-32.

 


[9]蔡茂,赵庆龙,赵英男,等.碳纤维麦弗逊悬架控制臂铺层优化
[J].科技创新与应用,2024,14(12):28-31.

 

Cai M, Zhao Q L, Zhao Y N, et al. Optimization of control arm laying of carbon fiber McPherson suspension
[J]. Technology Innovation and Application, 2024,14(12): 28-31.

 


[10]杨瑞瑞,王亚安,郭小敏,等.铝合金轮毂锻件折叠分析及控制
[J].热处理技术与装备,2025,46(1):47-50,55.

 

Yang R R, Wang Y A, Guo X M, et al. Folding analysis and control of aluminum alloy wheel hub forging
[J]. Heat Treatment Technology and Equipment, 2025, 46 (1): 47-50,55.

 


[11]冉林果,唐玉婷.铝合金精密模锻件折叠缺陷分析及改善措施
[J].铝加工,2022(3):17-20.

 

Ran L G, Tang Y T. Analysis and improvement measures of folding defect of aluminum alloy precision die forging
[J]. Aluminium Fabrication, 2022(3): 17-20.

 


[12]罗泽威,胡道春,阮湖斌,等.6082铝合金散热器折叠缺陷预测及精锻工艺优化
[J].锻压装备与制造技术,2016,51(2):95-97.

 

Luo Z W, Hu D C, Ruan H B,et al. Prediction of folding defects and optimization of precision forging process for 6082 aluminum alloy heat sink
[J]. China Metalforming Equipment & Manufacturing Technology,2016,51(2):95-97.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9