[1]刘建宇,张留军,张心金,等.井口头锻件用AISI 4140钢高温热压缩变形行为研究 [J].天津理工大学学报,2021,37(2):30-35.
Liu J Y,Zhang L J,Zhang X J,et al.Study on high temperature hot compression deformation behaviour of AISI 4140 steel for wellhead head forgings [J]. Journal of Tianjin Polytechnic University,2021,37(2):30-35.
[2]Mahender T, Balasundar I, Gupta A, et al. Metamodels to describe the high temperature deformation behaviour of Al 2014, 2wt% TiB2 composite [J]. Advances in Materials and Processing Technologies,2022,8(4):2097-2109.
[3]Chen G X, Lu X Y, Yan J, et al. High-temperature deformation behavior of M50 steel [J]. Metals, 2022, 12(4): 541.
[4]Song C N, Cao J G, Xiao J, et al.High-temperature constitutive relationship involving phase transformation for non-oriented electrical steel based on PSO-DNN approach [J].Materials Today Communications,2023,34: 105210.
[5]Sani S A, Ebrahimi G R, Vafaeenezhad H, et al. Modeling of hot deformation behavior and prediction of flow stress in a magnesium alloy using constitutive equation and artificial neural network (ANN) model [J]. Journal of Magnesium and Alloys, 2018, 6(2): 134-144.
[6]邱仟,王克鲁,李鑫,等.摩擦效应和温度效应对SP700钛合金热压缩流动应力的影响 [J]. 特种铸造及有色合金,2022,42(1): 59-63.
Qiu Q, Wang K L, Li X, et al. Influence of friction effect and temperature effect on the flow stress of SP700 titanium alloy in hot compression [J].Special Casting & Nonferrous Alloys,2022,42(1): 59-63.
[7]周靖,王宝雨,徐伟力,等.耦合损伤的22MnB5热变形本构模型 [J].北京科技大学学报,2013,35(11):1450-1457.
Zhou J, Wang B Y, Xu W L, et al. A 22MnB5 thermal deformation constitutive model with coupled damage [J]. Journal of University of Science and Technology Beijing, 2013,35 (11): 1450-1457.
[8]刘忠煜,陈雨琳,柳志铖,等.微合金化8630钢高温热压缩变形行为研究 [J].钢铁研究学报,2023,35(12):1548-1559.
Liu Z Y, Chen Y L, Liu Z C, et al. Study on the high-temperature hot compression deformation behavior of microalloyed 8630 steel [J]. Journal of Iron and Steel Research, 2023,35 (12): 1548-1559.
[9]李晗,李晓,张雪姣,等.9Cr3W3Co钢热变形行为研究 [J].大型铸锻件,2023(6): 30-34,39.
Li H, Li X, Zhang X J, et al. Study on heat deformation behavior of 9Cr3W3Co steel [J]. Heavy Casting and Forging,2023(6): 30-34,39.
[10]陈正宗,刘正东,包汉生.耐热合金热压缩修正后本构方程及热加工图 [J].钢铁研究学报,2015,27(9):44-48.
Chen Z Z, Liu Z D, Bao H S. Modified constitutive equation and hot working diagram of heat-resistant alloys after hot compression [J]. Journal of Iron and Steel Research, 2015,27 (9): 44-48.
[11]廉学魁,韩顺,刘跃,等.基于摩擦修正的GE1014钢热本构方程及热加工图 [J].锻压技术,2023,48(3):219-226.
Lian X K,Han S,Liu Y, et al. Thermal constitutive equation and hot working diagram of GE1014 steel based on friction modification [J]. Forging & Stamping Technology,2023,48(3):219-226.
[12]武建国,安红萍,刘俐利,等.基于摩擦修正的SA508-3钢高温本构方程 [J].锻压技术,2020,45(12): 178-182,190.
Wu J G, An H P, Liu L L, et al. High-temperature constitutive equation of SA508-3 steel based on friction modification [J]. Forging & Stamping Technology,2020,45(12): 178-182,190.
[13]Ebrahimi R, Najafizadeh A. A new method for evaluation of friction in bulk metal forming [J]. Journal of Materials Processing Technology, 2004, 152(2): 136-143.
[14]Wanjara P, Jahazi M, Monajati H, et al. Hot working behavior of near-α alloy IMI834 [J]. Materials Science and Engineering: A, 2005, 396(1-2): 50-60.
[15]Zhou H T, Kong F T, Wang X P,et al. Hot deformation behavior and microstructural evolution of as-forged Ti-44Al-8Nb-(W,B,Y) alloy with nearly lamellar microstructure [J]. Intermetallics, 2017, 81: 62-72.
[16]尤黎明,杜伟,董晓坤,等.基于Arrhenius方程氯丁胶管内胶应力-应变曲线预测及其扣压性能的计算仿真 [J].青岛科技大学学报(自然科学版),2021,42(6):68-73.
You L M, Du W, Dong X K, et al. Prediction of stress-strain curve of chloroprene rubber tube internal adhesive based on Arrhenius equation and computational simulation of its clamping performance [J]. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2021, 42 (6): 68-73.
[17]毛欢,韩莹莹.基于应变补偿Arrhenius模型的TC20钛合金本构方程研究 [J].铸造技术,2018,39(9):1939-1942,1947.
Mao H, Han Y Y. Study on constitutive equations of TC20 titanium alloy based on strain compensation Arrhenius model [J]. Casting Technology, 2018, 39 (9): 1939-1942,1947.
[18]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel [J]. Journal of Applied Physics, 1944, 15(1): 22-32.
[19]卢金武,王磊,范晓杰,等.TC18钛合金等温锻造过程的数值模拟 [J].湖南有色金属,2023,39(5):65-68,83.
Lu J W, Wang L, Fan X J, et al. Numerical simulation of isothermal forging process of TC18 titanium alloy [J]. Hunan Nonferrous Metals, 2023,39 (5): 65-68,83.
[20]陶成,崔霞,欧阳德来,等.TC21钛合金热压缩工艺数值模拟与实验研究 [J].塑性工程学报,2023,30(8):195-201.
Tao C, Cui X, Ouyang D L, et al. Numerical simulation and experimental research on TC21 titanium alloy hot compression process [J]. Journal of Plasticity Engineering, 2023,30 (8): 195-201.
|