网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于五轴联动的曲面激光熔覆路径规划
英文标题:Path planning of curved surface laser cladding based on five-axis linkage
作者:陈炜1 刘杰1 吴皓1 曹一枢2 白瑛2 张小计2 陈春刚2 
单位:(1. 江苏大学 机械工程学院 江苏 镇江 212013 2. 无锡曙光精密工业有限公司 江苏 无锡 214145) 
关键词:曲面零件 五轴联动 路径规划 激光熔覆 热冲压模具 
分类号:TN249;TH117.1
出版年,卷(期):页码:2025,50(4):165-172
摘要:

 为提高曲面模具激光熔覆成形精度和质量,进行了基于五轴联动的激光熔覆加工,并采用了喷嘴轴线与曲面加工点法矢量重合的策略。首先,根据解析曲面特征采用曲面等距轨迹生成法,运用NURBS曲线对交线进行描述。然后,以激光焦深作为激光熔覆加工轨迹的弦高约束条件来获得插补点,通过NURBS曲面拟合熔覆表面并微分解析插补点加工法矢量。最后,进行五轴联动曲面激光熔覆实验,对实验获得的熔覆层进行宏观形貌、微观组织和力学性能分析。结果表明,曲面熔覆层形控和质量良好,验证了该路径规划方法的适用性。

 

 In order to improve the forming precision and quality of laser cladding for curved surface die, laser cladding processing based on five-axis linkage was carried out, which adopted the strategy that the axis of  nozzle coincided with the normal vectors of curved surface machining points. Firstly, the curved surface equidistant trajectory generation method was adopted according to curved surface features, and the intersection line was described by NURBS curve. Secondly, the laser focal depth was used as the chord height constraint condition of laser cladding processing trajectory to obtain the interpolation point,  the cladding surface was fitted by NURBS curved surface,and the interpolation point processing normal vector was analyzed by differential analysis. Finally, the experiment of five-axis linkage curved surface laser cladding was carried out, and the macroscopic morphology, microstructure and mechanical properties of cladding layer obtained in the experiment were analyzed. The results show that the shape control and quality of curved surface cladding layer are good, which verifies the applicability of the path planning method. 

 
基金项目:
基金项目:国家自然科学基金资助项目(51875263);无锡市“太湖之光”科技攻关(产业化关键技术攻关)项目(WX0304-B010301220019PD)
作者简介:
作者简介:陈炜(1965-),男,博士,教授
参考文献:

 
[1]Schirdewahn S, Spranger F, Hilgenberg K, et al. Investigation of the thermal and tribological performance of localized laser dispersed tool surfaces under hot stamping conditions
[J]. Wear, 2021, 476: 203694.


 


[2]Kendall O, Abrahams R, Paradowska A, et al. Influence of multi-layer laser cladding depositions and rail curvature on residual stress in light rail components
[J]. Engineering Failure Analysis, 2023, 150: 107330.

 


[3]王国先. 五轴联动加工中自由曲面的刀具路径规划研究
[D]. 无锡:江南大学, 2023.

 

Wang G X. Research on Tool Path Planning for Free-form Surfaces in Five-axis Simultaneous Machining
[D]. Wuxi:Jiangnan University, 2023.

 


[4]Wang X D, Liu B, Mei X S, et al. Global smoothing for five-axis linear paths based on an adaptive NURBS interpolation algorithm
[J]. The International Journal of Advanced Manufacturing Technology, 2021, 114(7): 2407-2420.

 


[5]Zheng C, Yang D G, Hao W D, et al. Smooth path generation method of laser cladding bit repair robot based on 3D automatic measurement of wear surface point cloud
[J]. Journal of Physics: Conference Series, 2021, 1939(1): 012117.

 


[6]Batal A, Michalek A, Penchev P, et al. Laser processing of freeform surfaces: A new approach based on an efficient workpiece partitioning strategy
[J]. International Journal of Machine Tools & Manufacture, 2020, 156: 103593.

 


[7]Plakhotnik D, Glasmacher L, Vaneker T, et al. CAM planning for multi-axis laser additive manufacturing considering collisions
[J]. CIRP Annals, 2019, 68(1): 447-450.

 


[8]姜付兵, 石世宏, 石拓, 等. 基于光内送粉技术的激光加工机器人曲面熔覆试验研究
[J]. 中国激光, 2015, 42(8): 114-120.

 

Jiang F B, Shi S H, Shi T, et al. Experimental study on surface cladding of laser processing robot based on intra-optical powder feeding technology
[J]. Chinese Journal of Lasers, 2015, 42(8): 114-120.

 


[9]Zhou H, Zhu G X, Li J Q, et al. A review of the flow behavior of laser cladding pools based on inclined substrates
[J]. Journal of Manufacturing Processes, 2024, 120: 391-403.

 


[10]Zhu G X, Shi S H, Fu G Y, et al. The influence of the substrate-inclined angle on the section size of laser cladding layers based on robot with the inside-beam powder feeding
[J]. The International Journal of Advanced Manufacturing Technology, 2017, 88(5): 2163-2168.

 


[11]Montemurro M, Rodriguez T, Pailhès J, et al. On multi-material topology optimisation problems under inhomogeneous Neumann-dirichlet boundary conditions
[J]. Finite Elements in Analysis and Design, 2023, 214: 103867.

 


[12]魏栋. 面向复杂曲面加工的NURBS曲线逼近及插补算法研究
[D]. 杭州:浙江大学, 2017.

 

Wei D. Research on NURBS Curve Approximation and Interpolation Algorithm for Complex Surface Machining
[D]. Hangzhou: Zhejiang University, 2017.

 


[13]Liu J D, Sun W L, Huang Y. An algorithm for trajectory planning of complex surface parts for laser cladding remanufacturing
[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2021, 235(12): 2025-2032.

 


[14]Chai Q, Wang Z D, Fang C, et al. Numerical and experimental study on the profile of metal alloys formed on the inclined substrate by laser cladding
[J]. Surface and Coatings Technology, 2021, 422: 127494.

 


[15]Chen Y X, Huang J, Xia S N, et al. Evaluation of fusion performances of skin wound incisions under different defocus amounts in laser tissue welding
[J]. Optics & Laser Technology, 2023, 165: 109570.

 


[16]Wang X Z, Duan J, Jiang M, et al. Study of laser precision ablating texture patterns on large-scale freeform surface
[J]. The International Journal of Advanced Manufacturing Technology, 2017, 92(9): 4571-4581.

 


[17]王杨霄. 石油钻头复杂曲面随形激光熔覆及轨迹规划研究
[D]. 乌鲁木齐:新疆大学, 2022.

 

Wang Y X. Research on Laser Cladding and Trajectory Planning of Complex Curved Surfaces of Oil Drill Bits with Shape
[D]. Urumqi: Xinjiang University, 2022.

 


[18]Liu Y, Li C X, Huang X F, et al. Investigation on solidification structure and temperature field with novel processing of synchronous powder-feeding underwater laser cladding
[J]. Journal of Materials Processing Technology, 2021, 296: 117166.

 


[19]吴影, 刘艳, 陈文静, 等. 铁基激光熔敷层搭接与非搭接区摩擦性能
[J]. 清华大学学报(自然科学版), 2022, 62(3): 476-481.

 

Wu Y, Liu Y, Chen W J, et al. Frictional properties of iron-based laser-deposited layers in lap and non-lap zones
[J]. Tsinghua Science and Technology(Science and Technology), 2022, 62(3): 476-481. 

 


[20]陈炜, 王逸凡, 刘杰, 等. 复杂热冲压模具型面的激光熔覆强化及摩擦磨损控制技术
[J]. 锻压技术, 2024, 49(3): 186-193.

 

Chen W, Wang Y F, Liu J, et al. Laser cladding strengthening of complex hot stamping die surface and friction and wear control technology
[J]. Forging & Stamping Technology, 2024, 49(3):186-193.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9