网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
碳钢/不锈钢复合板微观组织演变及残余应力分析
英文标题:Microstructure evolution and residual stress analysis on carbon steel/stainless steel composite plate
作者:徐惠婷 李海斌 吕海波 帅美荣 王强 
单位:(太原科技大学 重型机械教育部工程研究中心 山西 太原 030024) 
关键词:热轧复合板  微观组织  位错密度 残余应力  晶粒度 
分类号:TG335.81
出版年,卷(期):页码:2025,50(4):117-124
摘要:

 摘要:采用真空热轧工艺制备Q235碳钢/304不锈钢复合板,第1道次压下率为30%,第2道次压下率分别为0%、10%、20%和25%。计算了基板/复板组织的平均晶粒度、位错密度及残余应力,并讨论了三者之间的关系。结果表明:随着压下率增加,界面铁素体区的面积逐渐减小,而界面处基板/复板的几何必要位错密度呈增大趋势。第2道次压下率从0%增加至20%时,基板碳钢平均晶粒度GC增大,塑性变形导致碳钢位错密度由0.49×1014 m-2增加至0.80×1014 m-2,残余应力由48.77 MPa增加至243.83 MPa;当压下率增大至25%时,GC减小,位错密度降低至0.67×1014 m-2,残余应力减小至33.89 MPa。而随着压下率增加,复板不锈钢平均晶粒度GS不断增大,位错密度由0.58×1014 m-2增加至1.02×1014 m-2,残余应力由45.93 MPa增加至91.86 MPa。研究结果为该类型复合板轧制工艺和组织调控技术提供了理论参考。

 

 Abstract: Q235 carbon steel/304 stainless steel composite plate was prepared by vacuum hot-rolled process with the first pass reduction rate of 30% and the second pass reduction rate of 0%, 10%, 20% and 25%, respectively. Then, the average grain size, dislocation density and residual stress of microstructures for substrate and composite plates were calculated, and the relationship among them was discussed. The results show that with the increasing of reduction rate, the area of interfacial ferrite region decreases gradually, and the geometric necessary dislocation density of substrate and composite plates at the interface shows an increasing trend. When the reduction rate of second pass increases from 0% to 20%, the average grain size of substrate carbon steel (GC) increases, and the dislocation density caused by plastic deformation of carbon steel increases from 0.49×1014 to 0.8×1014 m-2. The residual stress increases from 48.77 to 243.83 MPa. When the reduction rate increases to 25%, the GC size decreases, the dislocation density decreases to 0.67×1014 m-2, and the residual stress is reduced to 33.89 MPa. As the reduction rate increases, the average grain size of composite plate stainless steel (GS) increases continuously, the dislocation density increases from 0.58×1014 to 1.02×1014 m-2, and the residual stress increases from 45.93 to 91.86 MPa. The study results provide a theoretical reference for the rolling process and microstucture control technology of this type of composite plate.

 
基金项目:
基金项目:国家自然科学基金资助项目(51875382);山西省重点研发计划项目(202302150401003);太原市关键核心技术攻关“揭榜挂帅”项目(2024TYJB0114);太原科技大学研究生创新项目(SY2023022);晋城市重点研发计划(20230109);忻州市重点研发计划(20240103)
作者简介:
作者简介:徐惠婷(1998-),女,硕士研究生
参考文献:

 
[1]Hwang Y M, Tzou G Y. An analytical approach to asymmetrical cold-and hot-rolling of clad sheet using the slab method
[J]. Journal of Materials Processing Technology, 1996, 62(1-3): 249-259. 


 


[2]Liu B X, An Q, Yin F X, et al. Interface formation and bonding mechanisms of hot-rolled stainless steel clad plate
[J]. Journal of Materials Science, 2019, 54(17): 11357-11377.

 


[3]Dhib Z, Guermazi N, Gaspérini M, et al. Cladding of low-carbon steel to austenitic stainless steel by hot-roll bonding: Microstructure and mechanical properties before and after welding
[J]. Materials Science and Engineering: A, 2016, 656: 130-141.

 


[4]Huang Q X, Yang X R, Ma L F, et al. Interface-correlated characteristics of stainless steel/carbon steel plate fabricated by AAWIV and hot rolling
[J]. Journal of Iron and Steel Research International, 2014, 21(10): 931-937.

 


[5]戴刚,陈科,刘元铭,等.预制波纹钢/铝复合板轧制工艺模拟与界面结合性能研究
[J].锻压技术,2024,49(1):114-123.

 

Dai G,Chen K,Liu Y M,et al.Research on rolling process simulation and interface bonding performance of prefabricated corrugated steel/aluminum composite plates
[J]. Forging & Stamping Technology,2024,49(1):114-123.

 


[6]黄郦,张明亚,李景辉,等. 热轧对304不锈钢/Q235碳钢复合板界面组织的影响
[J]. 材料热处理学报,2022,43(12):100-106.

 

Huang L, Zhang M Y, Li J H, et al. Effect of hot rolling on the interfacial structure of 304 stainless steel /Q235 carbon steel composite plate
[J]. Transactions of Materials and Heat Treatment, 2022, 43(12): 100-106.

 


[7]李龙,张心金,刘会云,等. 不锈钢复合板的生产技术及工业应用
[J]. 轧钢,2013,30(3):43-47.

 

Li L, Zhang X J, Liu H Y, et al. Production technology and industrial application of stainless steel clad plate
[J]. Steel Rolling, 2013, 30(3): 43-47.

 


[8]田广民,李选明,赵永庆,等. 层状金属复合材料加工技术研究现状
[J]. 中国材料进展,2013,32(11):696-701.

 

Tian G M, Li X M, Zhao Y Q, et al. Research status of processing technology of layered metal composites
[J]. Materials China, 2013, 32(11): 696-701.

 


[9]任泉庄,黄峰,郭正洪. 中碳淬火-配分钢中的残余应力分布
[J]. 金属热处理,2016,41(10):1-5.

 

Ren Q Z, Huang F, Guo Z H. Residual stress distribution in medium carbon quenched steel
[J]. Heat Treatment of Metals,2016, 41(10): 1-5.

 


[10]Withers P J, Bhadeshia H. Residual stress. Part 1-Measurement techniques
[J]. Materials science and Technology, 2001, 17(4): 355-365.

 


[11]罗家豪,陈重毅,宿鹏吉,等. 降低冷轧取向硅钢残余应力和位错密度的磁-热耦合工艺
[J]. 金属热处理,2022,47(11):111-116.

 

Luo J H, Chen Z Y, Su P J, et al. Magnetic-thermal coupling process for reducing residual stress and dislocation density of cold-rolled oriented Silicon steel
[J]. Heat Treatment of Metals,2022, 47(11): 111-116.

 


[12]Borchers F, Kmmler J, Meyer H, et al. Influence of pre-machining on the surface integrity after processing by mechanical surface treatment
[J]. Procedia Cirp, 2018, 71: 453-459.

 


[13]GB/T 6394—2017,金属平均晶粒度测定方法
[S]. 

 

GB/T 6394—2017,Determination of estimating the average grain size of metal
[S]. 

 


[14]李海斌,黄庆学,周存龙,等. 热轧碳钢/不锈钢复合板结合界面碳钢的组织演变
[J]. 材料热处理学报, 2014, 35(4): 57-61.

 

Li H B, Huang Q X, Zhou C L, et al. Microstructure evolution of carbon steel at interface of carbon steel/stainless steel clad plate by hot rolling
[J]. Transactions of Materials and Heat Treatment, 2014, 35(4): 57-61.

 


[15]刘立彪,张计谋,徐琛,等. 液化气体汽车罐车用钢XGQ420DR的研制
[J]. 金属材料与冶金工程,2019,47(1):3-8.

 

Liu L B, Zhang J M, Xu C, et al. Development of steel XGQ420DR for liquefied gas automobile tank car
[J]. Metal Materials and Metallurgy Engineering, 2019, 47(1): 3-8.

 


[16]Xu X J, Song T, Fan Z, et al. Microstructure and dislocation strengthening of Sc microalloyed 2099 Al-Li alloy
[J]. Rare Metal Materials and Engineering, 2012, 41: 621-624.

 


[17]De Farias Soares A, Tatumi S H, Rocca R R, et al. Morphological and luminescent properties of HfO2 nanoparticles synthesized by precipitation method
[J]. Journal of Luminescence, 2020, 219: 116866.

 


[18]He J Y, Ma Y, Yan D S, et al. Improving ductility by increasing fraction of interfacial zone in low C steel/304 SS laminates
[J]. Materials Science and Engineering: A, 2018, 726: 288-297.

 


[19]Anand N, Chang K C, Yeh A C, et al. An efficient transient three-dimensional thermomechanical modeling of dynamic thermal stress building and releasing in a selective laser melting process
[J]. Journal of Materials Processing Technology, 2022, 309: 117741.

 


[20]Jiang G L, Wang J Y. Methods for stress measurement
[J]. Material Sciences, 2016, 6: 11-25.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9