网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
Cu-9Ni-6Sn合金显微硬度及微观组织研究
英文标题:Study on microhardness and microstructure for Cu-9Ni-6Sn alloy
作者:武峥1 2 龚留奎1 2 3 赵孝孝1 2 刘晓彬1 2 宋士鑫1 2 邓立勋1 2 黄伟1 2 
单位:(1.中国兵器科学研究院宁波分院 浙江 宁波 315103 2.内蒙金属材料研究所 内蒙古 包头 014034   3.北方材料科学与工程研究院有限公司 浙江 宁波 315103) 
关键词:Cu-9Ni-6Sn合金 显微硬度 挤压 固溶处理 晶界迁移 晶粒合并 
分类号:TG146.1
出版年,卷(期):页码:2025,50(4):97-106
摘要:

 采用OM、SEM、EBSD、TEM及硬度计等检测手段,研究了Cu-9Ni-6Sn合金的微观组织与性能,结果表明:挤压处理后,Cu-9Ni-6Sn合金的晶粒尺寸大幅度降低,基本呈等轴晶且分布较为均匀,铸态晶界处粗大的富Sn相发生破碎并且数量有所减少,内部主要存在微米级的富Sn相和纳米级的长条状、颗粒状NixSny化合物。Cu-9Ni-6Sn合金较优的固溶工艺为950 ℃/2 h+水淬,该过程中伴随着晶界迁移和晶粒合并,晶粒长大至394.565 μm,但晶界处微米级富Sn相和纳米级NixSny化合物基本全部回溶至基体中,只有少量颗粒状富Sn残留,整体固溶效果良好。

 

 The microstructure and properties of Cu-9Ni-6Sn alloy were studied by using the detection methods such as OM, SEM, EBSD, TEM and hardness tester. The results show that after extrusion treatment, the grain size of Cu-9Ni-6Sn alloy is greatly reduced, and it is basically equiaxed and evenly distributed. The coarse Sn-rich phase at the as-cast grain boundary is broken and the number is reduced. The interior mainly contains micro-sized Sn-rich phase, nano-sized long strip and granular NixSny compounds. The optimal solid solution process of Cu-9Ni-6Sn alloy is 950 ℃/2 h+water quenching. During this process, the grains grow to 394.565 μm, accompanying grain boundary migration and grain merging. However, the micro-sized Sn-rich phase and nano-sized NixSny compounds at the grain boundary are basically dissolved back into the matrix, and only a small amount of granular Sn-rich phase remains. The overall solid solution effect is good.

 
基金项目:
基金项目:创建国家自主创新示范区项目(XM2024XTGXQ12);宁波市重点研发计划(2023Z092,2023Z096)
作者简介:
作者简介:武峥(1998-),男,硕士研究生
参考文献:

 
[1]Guo C J, Wan J F, Chen J S, et al. Inhibition of discontinuous precipitation and enhanced properties of Cu-15Ni-8Sn alloy with Fe addition
[J]. Materials Science and Engineering: A, 2020, 795: 139917.


 


[2]祁红璋, 安建军, 严彪. Cu-15Ni-8Sn合金的开发与应用现状
[J]. 金属功能材料, 2009, 16(4):57-60.

 

Qi H Z, An J J, Yan B. Current status of the development and application of Cu-15Ni-8Sn alloy
[J]. Metal Functional Materials, 2009, 16(4):57-60.

 


[3]郭中凯.高强高弹Cu-15Ni-8Sn合金的制备及组织性能研究
[D]. 大连:大连理工大学, 2021.

 

Guo Z K.Preparation and Tissue Properties of High-strength Cu-15Ni-Sn Alloy
[D]. Dalian:Dalian University of Technology, 2021.

 

 


[4]郭诚君. 微量Co、P元素添加对Cu-15Ni-8Sn合金组织性能调控机理研究
[D]. 南昌:江西理工大学, 2021.

 

Guo C J. Study on the Regulation Mechanism of Cu-15Ni-8Sn Alloy Caused by Trace Co and P Element Addition
[D].Nangchang: Jiangxi University of Technology, 2021.

 


[5]张少宗, 江伯鸿, 丁文江. 国内Spinodal分解Cu-Ni-Sn系合金研究进展
[J]. 材料导报, 2006, 20(8):84-86.

 

Zhang S Z, Jiang B H, Ding W J. Development of Cu-Ni-Sn series alloys in China
[J]. Material Guide, 2006, 20(8):84-86.

 


[6]Deng L X, Gong L K, Song S X, et al. Microstructure and second-phase strengthening mechanisms of CuTeCrY alloy
[J]. Materials Science and Technology, 2023, 39(16):2535-2543.

 


[7]Alili B, Bradai D, Zieba P. On the discontinuous precipitation reaction and solute redistribution in a Cu-15%Ni-8%Sn alloy
[J]. Materials Characterization, 2008, 59(10):1526-1530.

 


[8]Bastow B, Kirkwood D. Solid/liquid equilibrium in the copper-nickel-tin system determined by microprobe analysis
[J].The Journal of the Institute of Metals, 1971, 99(9):277-283.

 


[9]龚留奎, 刘晓彬, 黄实哈, 等. Cu-0.77Cr-0.078Zr-0.13Ag合金的微观组织及性能研究
[J]. 热加工工艺,2022, 51(22):52-56.

 

Gong L K, Liu X B, Huang S H, et al.Research on the microorganization and properties of Cu-0.77Cr-0.078Zr-0.13Ag alloy
[J]. Hot Working Technology, 2022, 51(22):52-56.

 


[10]龚留奎, 张延松, 宋士鑫, 等. 铸态Cu-1.0Ni-0.2P合金高温热变形行为研究
[J]. 兵器材料科学与工, 2023, 46(6):70-74.

 

Gong L K, Zhang Y S, Song S X, et al. High temperature thermal deformation behavior study
[J]. Weapon Materials Science and Engineering, 2023, 46(6):70-74.

 


[11]Baburaj E, Kulkarun U, Menon E, et al. Initial stages of decomposition in Cu-9Ni-6Sn
[J]. Journal of Applied Crystallography, 1979, 12(5):476-480.

 


[12]Gong L K, Chen Z M, Han Z, et al. Microalloying effects on the mechanical and electrical properties of CuCrSnZnSi alloys
[J]. Journal of Alloys and Compounds, 2024, 1005:176055.

 


[13]Gong L K, Peng H C, Wan X Y, et al. Effect of grain boundary migration in Cu-Cr-Zr-Ti manufactured using different casting processes
[J]. Materials Science and Technology, 2019, 35(13):1642-1650.

 


[14]龚留奎, 冯宏伟, 宋士鑫, 等. 多组分CuCrSn-X-Y合金制备工艺与组织性能研究
[J]. 粉末冶金工业,2024, 34(4):24-32.

 

Gong L K, Feng H W, Song S X, et al. Study on the preparation process and tissue properties of multi-component CuCrSn-X-Y alloy
[J]. Powder Metallurgy Industry, 2024, 34(4):24-32.

 


[15]贾明灿, 皇涛, 宋克兴, 等. 消弧装置CuW电极微观侵蚀仿真与试验
[J]. 材料热处理学报, 2024, 45(5):186-196.

 

Jia M C, Huang T, Song K X, et al. Simulation and experiment of CuW electrode of arc elimination device
[J]. Journal of Materials Heat Treatment, 2024, 45(5):186-196.

 


[16]Qi J, Liu C J, Zhang J H, et al. Surface tension of Fe-based Cr-Ni-Ce-O-N heat-resistant alloy
[J]. Canadian Metallurgical Quarterly, 2022, 61(3):265-272.

 


[17]Toshihiro T, Masashi N, Ryosuke O, et al. Measurement of the surface tension of liquid Ga, Bi, Sn, In and Pb by the constrained drop method
[J]. International Journal of Materials Research, 2022, 95(9):818-822.

 


[18]袁文蛟,张宇腾,李梅彤,等.工业污泥热处理过程中重金属迁移转化研究进展
[J/OL].化工环保,1-9
[2025-03-19].http://kns.cnki.net/kcms/detail/11.2215.X.20241225. 1511.010.html.

 

Yuan W J, Zhang Y T, Li M T, et al. Research progress on the migration and transformation of heavy metals during the thermal treatment process of industrial sludge
[J]. Environmental Protection of Chemical Industry, 1-9
[2025-03-19].http://kns.cnki.net/kcms/detail/11.2215.X.20241225.1511.010.html.

 


[19]Niu C C, Song Z F. Effect of the elemental content of Bi and Pb on the properties of Sn-Bi-Pb low melting point alloys: Microstructure of materials
[J]. Materisla Transactions, 2024, 65(8):883-892.

 


[20]姜凯旋, 周延军, 宋克兴, 等. 固溶和时效对挤压态Cu-15Ni-8Sn合金组织和性能的影响
[J]. 材料热处理学报, 2023, 44(6):72-80.

 

Jiang K X, Zhou Y J, Song K X, et al. The effect of solid solution and aging on the organization and properties of Cu-15Ni-8Sn alloy
[J]. Journal of Materials Heat Treatment, 2023, 44(6):72-80.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9