网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
整体网格壁板滚弯成形工艺研究
英文标题:Research on roll bending process of integral mesh panel
作者:罗天龙 钱应平 陈亮 王子豪 
单位:(湖北工业大学 机械工程学院 现代制造质量工程湖北省重点实验室 湖北 武汉430068) 
关键词:整体网格壁板 2219铝合金 滚弯成形 成形质量 数学模型 
分类号:V461
出版年,卷(期):页码:2025,50(4):37-46
摘要:

 针对整体网格壁板滚弯成形质量差的问题,研究了不同工艺参数对于整体网格壁板滚弯成形质量的影响。以2219铝合金为研究对象,基于整体网格壁板滚弯成形原理,建立了下压量与滚弯半径的数学模型,其预测半径与目标半径误差不超过2.4%。利用ABAQUS软件建立了有限元模型,针对不同摩擦力、进给速度以及筋宽厚比进行模拟仿真。结果表明:随着摩擦力和进给速度的增加,整体网格壁板滚弯成形质量降低;随着筋宽厚比的增加,整体网格壁板滚弯成形质量提高。最后,对有限元模型进行了实验验证,实验数据与有限元模型拟合度较高,仿真与实验误差不超过7.48%。

 

 Aiming at the problem of poor roll bending quality of integral mesh panel, the impact of different process parameters on the roll bending quality of 

 integral mesh panel was studied. Taking 2219 aluminum alloy as the research object, the mathematical model of press amount and roll bending radius was established based on the roll bending principle of integral mesh panel, and the error between the predicted and target radiuses is not more than 2.4%. Using ABAQUS software to establish a finite element model, for different friction forces, feeding speed and width-to-thickness ratio of rib, the simulation was conducted. The results show that with the increasing of friction forces and feeding speed, the roll bending quality of integral mesh panel decreases, with the increasing of width-to-thickness ratio of rib, the roll bending quality of integral mesh panel increases. Finally, the finite element model was experimentally verified, and a good fit between the experimental data and the finite element model is obtained, and the error between simulation and experiment is not more than 7.48%.
Aiming at the problem of poor roll bending quality of integral mesh panel, the impact of different process parameters on the roll bending quality of 
 integral mesh panel was studied. Taking 2219 aluminum alloy as the research object, the mathematical model of press amount and roll bending radius was established based on the roll bending principle of integral mesh panel, and the error between the predicted and target radiuses is not more than 2.4%. Using ABAQUS software to establish a finite element model, for different friction forces, feeding speed and width-to-thickness ratio of rib, the simulation was conducted. The results show that with the increasing of friction forces and feeding speed, the roll bending quality of integral mesh panel decreases, with the increasing of width-to-thickness ratio of rib, the roll bending quality of integral mesh panel increases. Finally, the finite element model was experimentally verified, and a good fit between the experimental data and the finite element model is obtained, and the error between simulation and experiment is not more than 7.48%.
 
基金项目:
基金项目:湖北省厅重大专项(2020BAB037);湖北省技术创新专项(2022BEC022)
作者简介:
作者简介:罗天龙(2000-),男,硕士研究生
参考文献:

 
[1]李瀚伟. 大型铝合金整体网格壁板滚弯成形中填料作用研究
[D]. 合肥:中国科学技术大学, 2022.


 

Li H W. Study on the Effect of Filler in Roll Bending of Large Aluminum Alloy Intergral Panels
[D]. Hefei:Univerity of Science and Technology of China, 2022.

 


[2]曹庚顺, 胡春晓, 黄永坚. 俄罗斯飞机整体壁板成形技术
[J]. 航空科学技术, 1995(6): 28-30.

 

Cao G S, Hu C X, Huang Y J. Russian aircraft monolithic wall plate forming technology
[J]. Aeronautical Science & Technology, 1995(6): 28-30.

 


[3]刘劲松, 许沂, 张士宏, 等. 整体壁板增量压弯过程应力应变模拟
[J]. 塑性工程学报, 2003, 10(5): 42-45.

 

Liu J S, Xu X, Zhang S H, et al. Finite element simulation of stress and strain on the incremental bend forming techology of the intergral wing-skin panel
[J]. Journal of Plasticity Engineering, 2003, 10(5): 42-45.

 


[4]唐鑫森, 江剑成, 胡永祥. 带筋壁板筋条双侧激光喷丸弯曲变形特性
[J]. 塑性工程学报, 2023, 30(9): 180-187.

 

Tang X S, Jiang J C, Hu Y X. Bending deformation characteristics of stiffener plate of double-sided laser peen forming of stiffener
[J]. Journal of Plasticity Engineering, 2023, 30(9): 180-187.

 


[5]周贤宾, 常和生, 陈爱雅, 等. 带筋壁板的时效应力松驰校形
[J]. 航空制造工程, 1998(5): 19-20,3.

 

Zhou X B, Chang H S, Chen A Y, et al. Ageing stress relaxation calibration of reinforced wall plates for molding of Russian aircraft monolithic wall plates
[J]. Aviation Maintenance & Engineering, 1998(5): 19-20,3.

 


[6]Xiao H, Zhang S H, Liu J S, et al. Experimental and numerical investigation on filling roll bending of aluminum alloy integral panel
[J]. Journal of Manufacturing Science and Engineering, 2012, 134(6):10111-10117.

 


[7]肖寒, 刘劲松, 程明, 等. 铝合金整体壁板橡胶填料辅助滚弯成形试验研究
[J]. 轻合金加工技术, 2009, 37(6): 52-55.

 

Xiao H, Liu J S, Cheng M, et al. Research on formability of rubber filling roll bending process of integral panel skins
[J]. Light Alloy Fabrication Technology, 2009, 37(6): 52-55.

 


[8]肖寒, 刘劲松, 张士宏, 等. 筋条外置整体壁板填料滚弯成形工艺研究
[J]. 材料工程, 2010(8): 56-60.

 

Xiao H, Liu J S, Zhang S H, et al. Research on filling roll bending process of integral panel skins with rib-outward
[J]. Journal of Materials Engineering, 2010(8): 56-60.



[9]肖寒, 刘劲松, 张士宏, 等. 塑料辅助网格式整体壁板滚弯成形实验研究
[J]. 塑性工程学报, 2009, 16(4): 17-20.



Xiao H, Liu J S, Zhang S H, et al. Experimental research on the plastics filling roll bending process of integral panel skins with grid-type ribs
[J]. Journal of Plasticity Engineering, 2009, 16(4): 17-20.

 


[10]Li H W, Song H W, Zhang S H, et al. Operating effect of filler on filling roll bending of integral panel
[J]. Transactions of Nonferrous Metals Society of China, 2023, 33(8): 2314-2327.

 


[11]赖松柏, 陈同祥, 于登云. 整体壁板填料辅助滚弯成形的动力显式分析方法
[J]. 航天器工程, 2012, 21(3): 41-47.

 

Lai S B, Chen T X, Yu D Y. Dynamic explicit analysis method for roll bending forming of intergrally stiffened panel with rubber filler
[J]. Spacecraft Engineering, 2012, 21(3): 41-47.

 


[12]汪兴. 四辊卷板机滚弯成形工艺研究及软件开发
[D]. 武汉:华中科技大学, 2020.

 

Wang X. Research on Roll Forming Process and Software Development of Four-roll Bending Machine
[D]. Wuhan:Huazhong University of Science and Technology, 2020.

 


[13]王艳, 胡捷飞, 许光辉, 等. 三辊非对称滚弯成形的数值仿真及试验验证
[J]. 中国机械工程, 2016, 27(15): 2085-2090.

 

Wang Y, Hu J F, Xu G H, et al. Numerical simulation and experimental verification of asymmertrical three-roll bending process
[J]. China Mechanical Engineering, 2016, 27(15): 2085-2090.

 


[14]杨燕琴, 赵耀. 板材成形回弹的数值仿真方法研究
[J]. 船海工程, 2013, 42(5): 43-46.

 

Yang Y Q, Zhao Y. Numerical simulation method of spring-back in plate forming
[J]. Ship & Ocean Engineering, 2013, 42(5): 43-46.

 

 


[15]Chung W, Cho J, Belytschko T. On the dynamic effects of explicit FEM in sheet metal forming analysis
[J]. Engineering Computations, 1998, 15(6): 750-776.


 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9