[1]李光霁, 刘新玲. 汽车轻量化技术的研究现状综述 [J]. 材料科学与工艺, 2020, 28(5): 47-61.
Li G J, Liu X L. Literature review on research and development of automotive lightweight technology [J]. Materials Science and Technology, 2020, 28(5): 47-61.
[2]方刚, 陈祝, 雷丽萍. 非关联本构模型在铝合金板料成形有限元模拟中的应用 [J]. 塑性工程学报, 2021,28(6): 8-18.
Fang G, Chen Z, Lei L P. Application of non-associated constitutive models in finite element simulation of aaluminum alloy sheet forming [J]. Journal of Plasticity Engineering, 2021, 28(6): 8-18.
[3]黄珍媛, 谭朋朋, 魏婉珠, 等. 3104铝合金薄板本构模型 [J]. 塑性工程学报, 2021, 28(7): 117-123.
Huang Z Y, Tan P P, Wei W Z, et al. Constitutive model of 3104 aluminum alloy sheet [J]. Journal of Plasticity Engineering, 2021, 28(7): 117-123.
[4]Kuwabara T, Mori T, Asano M, et al. Material modeling of 6016-O and 6016-T4 aluminum alloy sheets and application to hole expansion forming simulation [J]. International Journal of Plasticity, 2017, 93: 164-186.
[5]Mulidrán P, iser M, Slota J, et al. Numerical prediction of forming car body parts with emphasis on springback [J]. Metals, 2018, 8(6): 435-450.
[6]Park T, Chung K, Ryou H,et al. Numerical simulation of time-dependent spring-back behavior for aluminum alloy 6022-T4 sheet [J]. InAIP Conference Proceedings, 2010, 1252(1): 153-160.
[7]Wu H Y, Yu H Y. A constitutive model for cracking prediction of steel/aluminum thin-walled tubes during plastic joining [J]. The International Journal of Advanced Manufacturing Technology, 2023, 127(5): 2357-2370.
[8]Asmael M, OtonyeTekena F, Tauqir N. Prediction of springback behavior of Vee bending process of AA5052 aluminum alloy sheets using machine learning [J]. Jordan Journal of Mechanical & Industrial Engineering,2023,17(1):1-14.
[9]Peter H, Sebastian S, Marion M. Investigation of the springback behaviour of high-strength aluminium alloys based on cross profile deep drawing tests [J]. Procedia Manufacturing,2020, 47:1223-1229.
[10]闫华军, 王波, 张双杰, 等. 铝合金地板梁拉延成形回弹分析及补偿 [J]. 塑性工程学报, 2020, 27(2):21-28.
Yan H J, Wang B, Zhang S J, et al. Springback analysis and compensation of drawing of aluminum alloy floor beam [J]. Journal of Plasticity Engineering, 2020, 27(2):21-28.
[11]梁家生. 铝合金壳体精密成形回弹控制工艺优化 [J]. 精密成形工程, 2024, 16(2): 104-107.
Liang J S. Optimization of precision forming process for aluminum alloy shell [J]. Journal of Netshape Forming Engineering, 2024, 16(2): 104-107.
[12]Barlat F, Brem J C, Yoon J W, et al. Plane stress yield function for aluminum alloy sheets-Part I:Theory [J]. International Journal of Plasticity, 2003, 19(9): 1297-1319.
[13]陈俊甫.延性金属拉伸大应变范围硬化曲线测量研究 [D].长春:吉林大学,2020.
Chen J F. Study on the Determination of Hardening Curve in Large Range of Strains from Tensile Testes for Ductile Metals [D]. Changchun:Jilin University,2020.
[14]Stanic' M. Calibration and Validation of a Damage Model for 6005-T6 Aluminium [D]. Zagreb: University of Zagreb,2021.
[15]董伊康, 齐建军, 孙力, 等. 车用钢板材料硬化模型的适用性 [J]. 机械工程材料, 2020, 44(10): 81-86.
Dong Y K, Qi J J, Sun L, et al. Applicability of hardening models for automobile steel sheets [J]. Materials for Mechanical Engineering, 2020, 44(10): 81-86.
[16]GB/T 228.1—2021, 金属材料拉伸试验第1部分:室温试验方法 [S].
GB/T 228.1—2021, Metallic materials—Tensile testing—Part 1:Method of test at room temperature [S].
[17]段晋昌, 梁卫抗, 马立安, 等. SUS430不锈钢自由曲面弯曲回弹的预测和试验研究 [J].锻压技术,2022,47(2):220-228.
Duan J C, Liang W K, Ma L A, et al. Prediction and experimental research on bending springback for free-form surface of SUS430 stainless steel [J]. Forging & Stamping Technology, 2022, 47(2): 220-228.
[18]胡启. 轻质高强板塑性变形的各向异性屈服准则与失效模型的理论研究 [D]. 上海:上海交通大学, 2019.
Hu Q. Theory Research on Anisotropic Yield Criterion and Failure Model for the Plastic Deformation of Light Weight and High Strength Sheet Metal [D]. Shanghai: Shanghai Jiao Tong University,2019.
[19]李健强, 张赛军, 龚小龙, 等. 基于优化方法的复杂各向异性屈服函数参数标定 [J].塑性工程学报, 2017, 24(1): 160-167.
Li J Q, Zhang S J, Gong X L, et al. Constitutive parameter identification of complex orthotropic yield functions based on optimization method [J]. Journal of Plasticity Engineering, 2017, 24(1): 160-167.
|