网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
高强6451铝合金自由曲面件成形回弹预测
英文标题:Springback prediction of forming free-form surface parts for high-strength 6451 aluminum alloy
作者:梁卫抗1 2 3 王艺川1 袁嵘1 王乾廷4 周策2 邓将华3 冉继龙5  刘贞山6 
单位:(1.福建理工大学 材料科学与工程学院 福建 福州 350118 2.福建省南平铝业股份有限公司 福建 南平 353000   3.福州大学 机械工程及自动化学院 福建 福州 350108  4.厦门理工学院 材料科学与工程学院 福建 厦门 361024   5.中铝瑞闽股份有限公司 福建 福州350015 6.中铝材料应用研究院有限公司 北京102209) 
关键词:高强6451铝合金 屈服准则 硬化模型 自由曲面件 回弹 
分类号:TG386
出版年,卷(期):页码:2025,50(4):25-36
摘要:

 针对汽车内覆盖件用高强6451铝合金冲压成形过程中存在的回弹等问题,以自由曲面件为研究对象,选用Yld2000-2d屈服准则与Voce-Swift混合硬化模型,开发了VUMAT子程序,对6451铝合金自由曲面件冲压成形过程进行仿真分析。利用ABAQUS软件研究了冲压速度、保压时间和循环次数对自由曲面件成形回弹的影响规律。结果表明:提高冲压速度、增加保压时间和循环次数能够降低自由曲面件的回弹量,且冲压速度影响最大,保压时间次之,循环次数影响最小。自由曲面件回弹量仿真值与试验值的误差在3.13%~11.31%之间,表明所开发的VUAMT子程序能够较好地预测自由曲面件的成形回弹规律。

 

 Aiming at the problem of springback in the stamping process of high-strength 6451 aluminum alloy for automoblie interior panels, for free-form surface parts, VUMAT subroutine was developed by yield criterion Yld2000-2d and Voce-Swift mixed hardening model to simulate and analysis the stamping process of free-form surface parts for 6451 aluminum alloy, and the influence laws of stamping speed,holding time and number of cycles on the springback of free-form surface parts were investigated by software ABAQUS. The results indicate that increasing the stamping speed, holding time and number of cycles can reduces the springback amount of free-form surface parts, and the stamping speed has the greatest impact, followed by the holding time, and the number of cycles has the least impact. The error between the simulated value and experimental value for the springback amount of free-form surface parts is 3.13% to 11.31%, which  indicates that the developed VUMAT subroutine can better predict the springback law of free-form surface parts. 

 
基金项目:
基金项目:福建省科技计划区域发展项目 (2023H4021);福建省科技计划对外合作产业化项目(2022I1011);福州市科技计划科技重大项目(2021-ZD-214);宁德市产学研合作项目(2021C004);福建省科技计划高校产学合作项目(2023H6035,2023H6036)
作者简介:
作者简介:梁卫抗(1985-),男,博士,副教授
参考文献:

 
[1]李光霁, 刘新玲. 汽车轻量化技术的研究现状综述
[J]. 材料科学与工艺, 2020, 28(5): 47-61. 


 

Li G J, Liu X L. Literature review on research and development of automotive lightweight technology
[J]. Materials Science and Technology, 2020, 28(5): 47-61.

 


[2]方刚, 陈祝, 雷丽萍. 非关联本构模型在铝合金板料成形有限元模拟中的应用
[J]. 塑性工程学报, 2021,28(6): 8-18.

 

Fang G, Chen Z, Lei L P. Application of non-associated constitutive models in finite element simulation of aaluminum alloy sheet forming
[J]. Journal of Plasticity Engineering, 2021, 28(6): 8-18.

 


[3]黄珍媛, 谭朋朋, 魏婉珠, 等. 3104铝合金薄板本构模型
[J]. 塑性工程学报, 2021, 28(7): 117-123. 

 

Huang Z Y, Tan P P, Wei W Z, et al. Constitutive model of 3104 aluminum alloy sheet
[J]. Journal of Plasticity Engineering, 2021, 28(7): 117-123.

 


[4]Kuwabara T, Mori T, Asano M, et al. Material modeling of 6016-O and 6016-T4 aluminum alloy sheets and application to hole expansion forming simulation
[J]. International Journal of Plasticity, 2017, 93: 164-186. 

 


[5]Mulidrán P, iser M, Slota J, et al. Numerical prediction of forming car body parts with emphasis on springback
[J]. Metals, 2018, 8(6): 435-450.

 


[6]Park T, Chung K, Ryou H,et al. Numerical simulation of time-dependent spring-back behavior for aluminum alloy 6022-T4 sheet
[J]. InAIP Conference Proceedings, 2010, 1252(1): 153-160.

 


[7]Wu H Y, Yu H Y. A constitutive model for cracking prediction of steel/aluminum thin-walled tubes during plastic joining
[J]. The International Journal of Advanced Manufacturing Technology, 2023, 127(5): 2357-2370. 

 


[8]Asmael M, OtonyeTekena F, Tauqir N. Prediction of springback behavior of Vee bending process of AA5052 aluminum alloy sheets using machine learning
[J]. Jordan Journal of Mechanical & Industrial Engineering,2023,17(1):1-14.

 


[9]Peter H, Sebastian S, Marion M. Investigation of the springback behaviour of high-strength aluminium alloys based on cross profile deep drawing tests
[J]. Procedia Manufacturing,2020, 47:1223-1229. 

 


[10]闫华军, 王波, 张双杰, 等. 铝合金地板梁拉延成形回弹分析及补偿
[J]. 塑性工程学报, 2020, 27(2):21-28. 

 

Yan H J, Wang B, Zhang S J, et al. Springback analysis and compensation of drawing of aluminum alloy floor beam
[J]. Journal of Plasticity Engineering, 2020, 27(2):21-28.

 


[11]梁家生. 铝合金壳体精密成形回弹控制工艺优化
[J]. 精密成形工程, 2024, 16(2): 104-107.

 

Liang J S. Optimization of precision forming process for aluminum alloy shell
[J]. Journal of Netshape Forming Engineering, 2024, 16(2): 104-107.

 


[12]Barlat F, Brem J C, Yoon J W, et al. Plane stress yield function for aluminum alloy sheets-Part I:Theory
[J]. International Journal of Plasticity, 2003, 19(9): 1297-1319. 

 


[13]陈俊甫.延性金属拉伸大应变范围硬化曲线测量研究
[D].长春:吉林大学,2020.

 

Chen J F. Study on the Determination of Hardening Curve in Large Range of Strains from Tensile Testes for Ductile Metals
[D]. Changchun:Jilin University,2020.

 


[14]Stanic' M. Calibration and Validation of a Damage Model for 6005-T6 Aluminium
[D]. Zagreb: University of Zagreb,2021.

 


[15]董伊康, 齐建军, 孙力, 等. 车用钢板材料硬化模型的适用性
[J]. 机械工程材料, 2020, 44(10): 81-86.

 

Dong Y K, Qi J J, Sun L, et al. Applicability of hardening models for automobile steel sheets
[J]. Materials for Mechanical Engineering, 2020, 44(10): 81-86.

 


[16]GB/T 228.1—2021, 金属材料拉伸试验第1部分:室温试验方法
[S].

 

GB/T 228.1—2021, Metallic materials—Tensile testing—Part 1:Method of test at room temperature
[S].

 


[17]段晋昌, 梁卫抗, 马立安, 等. SUS430不锈钢自由曲面弯曲回弹的预测和试验研究
[J].锻压技术,2022,47(2):220-228.

 

Duan J C, Liang W K, Ma L A, et al. Prediction and experimental research on bending springback for free-form surface of SUS430 stainless steel
[J]. Forging & Stamping Technology, 2022, 47(2): 220-228.

 


[18]胡启. 轻质高强板塑性变形的各向异性屈服准则与失效模型的理论研究
[D]. 上海:上海交通大学, 2019.

 

Hu Q. Theory Research on Anisotropic Yield Criterion and Failure Model for the Plastic Deformation of Light Weight and High Strength Sheet Metal
[D]. Shanghai: Shanghai Jiao Tong University,2019.

 


[19]李健强, 张赛军, 龚小龙, 等. 基于优化方法的复杂各向异性屈服函数参数标定
[J].塑性工程学报, 2017, 24(1): 160-167.

 

 

Li J Q, Zhang S J, Gong X L, et al. Constitutive parameter identification of complex orthotropic yield functions based on optimization method
[J]. Journal of Plasticity Engineering, 2017, 24(1): 160-167.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9