[1]冯缘,康向东,45 MN挤压机节能改造技术方案探讨[J].特钢技术,2023,29(1):55-58.
Feng Y, Kang X D. Discussion on energy saving improvements for 45 MN extrusion press[J]. Special Steel Technology, 2023,29(1):55-58.
[2]冼灿标,齐水冰, 孙友松, 等. 直驱泵控伺服液压机节能分析与试验研究[J].机床与液压,2014,42(5):45-48,115.
Xian C B, Qi S B, Sun Y S, et al. Analysis and experiment research on energysaving mechanism of direct drive pumpcontrolled servo hydraulic press[J]. Machine Tool & Hydraulics, 2014,42(5):45-48,115.
[3]Huang H H, Zou X, Li L, et al. Energysaving design method for hydraulic press drive system with multi motorpumps[J]. International Journal of Precision Engineering and ManufacturingGreen Technology,2019,6(2):223-234.
[4]韩泓,孟朝霞,乔凌霄. 大型挤压机节能控制系统的设计开发[J].锻压装备与制造技术,2019,54(5):50-52.
Han H,Meng Z X, Qiao L X. Design and development of energy saving control system for large extruder[J].China Metalforming Equipment & Manufacturing Technology, 2019,54(5):50-52.
[5]刘艳雄,韩森波,徐志成.基于负载敏感与势能回收系统的液压精冲机节能研究[J].液压与气动,2023,47(8):66-75.
Liu Y X, Han S B, Xu Z C. Research on energy saving of hydraulic fine blanking press based on load sensing and potential energy recovery system[J]. Chinese Hydraulics & Pneumatics, 2023, 47(8):66-75.
[6]陈柏金,张连华,马海军,等.快速锻造液压机叠加供液节能技术[J].锻压技术,2023,48(6):199-203.
Chen B J, Zhang L H, Ma H J, et al. Superimposed liquid supply energysaving technology on fast forging hydraulic press[J]. Forging & Stamping Technology, 2023,48(6):199-203.
[7]印四华.考虑不确定性的挤压制造能耗特性分析与能效优化研究[D]. 广州:广东工业大学, 2022.
Yin S H. The Energy Consumption Characteristic Analysis and Energy Efficiency Optimization Study of Extrusion Manufacturing Considering Uncertainty[D]. Guangzhou:Guangdong University of Technology, 2022.
[8]李宝卿,郭康,刘帅. 潘克改进型正弦直接驱动系统新进展[J].锻造与冲压,2021(1):36,38,40-41.
Li B Q,Guo K,Liu S. New development of modified sine direct drive system of pahnke[J]. Forging & Metalforming, 2021(1):36,38,40-41.
[9]颜笑鹏.快速锻造液压机高效节能传动技术研究[D]. 武汉:华中科技大学,2021.
Yan X P. Research on Highefficiency and Energysaving Transmission Technology of Fast Forging Hydraulic Press[D]. Wuhan:Huazhong University of Science and Technology,2021.
[10]Zhao K, Liu Z F, Yu S R, et al. Analytical energy dissipation in large and mediumsized hydraulic press[J]. Journal of Cleaner Production, 2015,103: 908-915.
[11]LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015,521:436-444.
[12]韩力群. 人工神经网络理论、设计及应用[M]. 北京: 化学工业出版社, 2007.
Han L Q. Theory, Design and Application of Artificial Neural Network[M]. Beijing: Chemical Industry Press,2007.
|