网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
变截面超高强韧钢核心部件径向空心锻造工艺
英文标题:Radial hollow forging process on key components for ultra-high strength and tough steel with varible cross-section
作者:王交其 王星 雷丙旺 寇艳艳 刘海江 王莹莹 
单位:内蒙古北方重工业集团有限公司 
关键词:32CrNi3MoVE钢 热加工图 挤压 径向空心锻造 低温冲击韧性 
分类号:TG316
出版年,卷(期):页码:2025,50(3):128-136
摘要:

 为实现超高强韧钢核心部件强度与冲击性能的合理匹配,在Gleeble3500热模拟试验机上对Cr-Ni-Mo-V钢在温度为850~1250 ℃、应变速率为1~10 s-1、变形量为50%的条件下进行了热压缩实验,获得了该变形条件下的真应力-真应变曲线并建立了不同应变条件下的热加工图,确定实心锻造和径向缩管锻造温度为1150 ℃,径向空心锻造温度为1220~1250 ℃。基于32CrNi3MoVE钢的CCT曲线和TTT曲线,结合Jmatpro模拟结果,确定了碳化物的相变温度,并与传统成形工艺对比,确定采用挤压开坯+精锻机径向锻造成形工艺,在此基础上,研究3种不同径向锻造变形方式对变截面超高强韧钢核心部件组织和性能的影响。结果表明,采用两火径向带芯棒空心锻造方式,能够有效打碎和细化原有的铸态枝晶,均匀锻造变形组织,强度同等的条件下,可提高低温冲击韧性。

 In order to achieve a reasonable match between the strength and impact properties of the key components for ultra -high strength and toughness steel, a thermal compression experiment was conducted on 32CrNi3MoVE steel at a temperature of 850-1250 ℃, a strain rate of 1-10 s-1, and a deformation amount of 50% by thermal simulator Gleeble3500, and the stress-strain curves under the deformation conditions were obtained to established the thermal processing maps under different strain conditions. Then, the forging temperatures of solid and radial shrinkage tubes were determined to be 1150 ℃, and the radial hollow forging temperatures of tubes were 1220-1250 ℃. Furthermore, based on the CCT and TTT curves of 32CrNi3MoVE steel, combined with the Jmatpro simulation results, the phase transformation temperature of carbide was determined. Compared with the traditional forming process, the extrusion blanking + radial forging process by fine forging machine was determined, and on this basis, the influences of three different radial forging deformation methods on the microstructure and properties of the key components for ultra-high strength and toughness steel with variable cross-section were studied. The results show that the radial hollow forging method by two-fire and with mandrel can effectively break and refine the original as-cast dendrites, uniformly forge the deformed structure, and improve the low-temperature impact toughness under the same strength conditions.

基金项目:
国防基础科研计划(JCKY2022208A002)
作者简介:
作者简介:王交其(1967-),男,学士,正高级工程师 E-mail:Wang8428225001257@qq.com 通信作者:王莹莹(1982),女,硕士,高级工程师 E-mail:yy1257@qq.com
参考文献:

 [1]毕梦凡,方俊,樊黎霞,等.精锻成形身管力学性能预测分析与工艺优化[J].兵器装备工程学报,2020,41(5)161-165.


 


Bi M F, Fang J, Fan L X, et al. Mechanical properties prediction and process optimization of precision forged barrelst[J]. Journal of Ordnance Equipment Engineering202041(5): 161-165.


 


[2]胡士廉,吕彦,胡俊,等.高强韧厚壁炮钢材料的发展[J].兵器材料科学与工程,201841(6)114-118.


 


Hu S L, Lyu Y, Hu J, et al. Progress in high strength and toughness of steel material for thickwall cannon[J]. Ordnance Material Science and Engineering, 201841(6)114-118.


 


[3]杨耀龙,毛蔚,肖建军,等.35CrNi3MoV高强韧性锻件研制[J].大型铸锻件,2021, 32(6)29-31.


 


Yang Y L, Mao W, Xiao J J, et al. Development of 35CrNi3MoV highstrength and toughness forgings[J]. Heavy Castings and Forgings,2021, 32(6):29-31.


 


[4]袁晓冬, 高灵清, 张海峰.炮管材料的发展现状与趋势 [J].材料开发与应用, 2017, 32(5): 98-104.


 


Yuan X D, Gao L Q, Zhang H F. Current status and trends of gun barrel materials [J]. Materials Development and Application, 2017, 32(5): 98-104.


 


[5]胡士廉,韦航标,胡俊,.高强韧炮钢热塑性变形应力-应变本构模型及锻造仿真研究[J].兵器材料科学与工程,2019,42(1):87-89


 


Hu S L, Wei H B, Hu J, et al. Research on the stressstrain constitutive model and forging simulation of thermoplastic deformation of highstrength and tough gun steel [J]. Ordnance Material Science and Engineering, 2019, 42 (1): 87-89


 


[6]肖桂枝,李鹤,庞玉华,.晶粒尺寸与碳化物组织细化对18Cr14Co12Mo4轴承钢性能的影响[J].锻压技术,2024,49(10):1-7.


 


Xiao G Z, Li H, Pang Y H, et al. The influence of grain size and carbide microstructure refinement on the properties of 18Cr14Co12Mo4 bearing steel [J]. Forging & Stamping Technology, 2024, 49 (10): 1-7.


 


[7]何立东,刘华.基于DEFORM大型锻件锻造工艺改进的研究[J]. 机械工程与自动化, 2021, 6(6): 126-127.


 


He L D, Liu H. Research on the improvement of forging process for DEFORM large forging [J]. Mechanical Engineering & Automation, 2021, 6(6): 126-127.


 


[8]张宏凯,李岩,肖豪.金属热变形微观组织精密控制的研究[J]. 精密成形工程, 2020, 12(6): 49-57.


Zhang H K, Li Y, Xiao H. Research on precision control of microstructure in metal hot deformation [J]. Journal of Netshape Forming Engineering, 2020, 12 (6): 49-57.


 


[9]GB/T 6394—2017, 金属平均晶粒度测定方法[S].


 


GB/T 6394—2017,  Determination of estimating the average grain size of metal[S].


 


[10]GB/T 2281—2021, 金属材料拉伸试验第1部分:室温试验方法[S].


 


GB/T 2281—2021, Metallic materials—Tensile testing—Part 1: Method of test at room temperature[S].


 


[11]GB/T 229—2020, 金属材料夏比摆锤冲击试验方法[S].


 


GB/T 229—2020, Metallic materials—Charpy pendulum impact test method[S].


 


[12]郭峰,黄进峰,吴护林,等.高强韧性炮钢的组织和力学性能[J]. 金属热处理, 2005, 30(11): 31-34.


 


Guo F, Huang J F, Wu H L, et al. Microstructure and mechanical properties of high strength and toughness blasting steel[J]. Heat Treatment of Metals, 2005, 30(11): 31-34.


 


[13]王毛球,董瀚,王琪,.高强度炮钢的组织和力学性能[J].兵器材料科学与工程,2003(2):7-10,18.


 


Wang M Q, Dong H, Wang Q, et cl. The microstructure and mechanical properties of highstrength gun steel[J]. Ordnance Materials Science and Engineering, 2003(2): 7-10,18.


 


[14]张雪,樊黎霞,张鹤词.身管线膛精密径向锻造的锻透性分析[J]. 兵工学报, 2018, 40(3): 473-479.


 


Zhang X, Fan L X, Zhang H C.Analysis of forging penetration in precision radial forging of pipeline bore [J].Acta Armamentarii 2018, 40(3): 473-479.


 


[15]付正刚,谢伟.18 MN径锻机锻制GH901台阶轴工艺优化研究[J]. 特钢技术, 2015, 85(21): 31-34.


 


Fu Z G, Xie W. Research on process optimization of GH901 step shaft forging with 18 MN diameter forging machine [J]. Special Steel Technology, 2015, 85(21): 31-34.


 


 

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9