网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
新型耐热钢G115大口径无缝管挤压模拟
英文标题:Simulation of extrusion for large-diameter seamless tube of new heat-resistant steel G115
作者:车洪艳1  孙嘉汐1  孙东志2  马迎松3  魏佳雨1   李永清4  何西扣1 
单位:1.中国钢研科技集团 钢铁研究总院有限公司 2.德国sunCAE咨询公司 3.广西科技大学 机械与汽车工程学院  4.内蒙古北方重工业集团有限公司 
关键词:G115马氏体耐热钢 热挤压  ABAQUS 大口径无缝管 热力耦合 
分类号:TG335.6
出版年,卷(期):页码:2025,50(3):120-127
摘要:

 为提高G115马氏体耐热钢产品质量、优化工艺流程、节约研发时间和成本,采用通用有限元软件ABAQUSG115钢大口径无缝管挤压过程进行模拟,使用任意拉格朗日欧拉(Arbitrary LagrangianEulerian)公式的数值模型解决了模拟超大塑性变形的难点,同时建立了准确的摩擦模型和考虑各种影响因素的材料模型,通过对比仿真与试验结果,验证了模型的准确性,并研究了初始挤压温度和挤压速度、摩擦因数、最大剪应力对挤压的影响。结果表明:随着初始挤压温度的提高,所需挤压力下降;挤压速度越大,所需挤压力越大;摩擦因数、最大剪应力与挤压力均为正相关关系。

 In order to improve the product quality, optimize the process flow and save the research and development time and cost of G115 martensitic heat-resistant steel, the extrusion process of large-diameter seamless tube of G115 steel was simulated by finite element software ABAQUS, and the difficulty of simulating super-large plastic deformation was solved by using the Arbitrary Lagrangian-Eulerian (ALE) formulation. Then, an accurate friction model and a material model considering various influencing factors were established, and the accuracy of the model was verified by comparing the simulation and experimental results. Furthermore, the influences of initial extrusion temperature, extrusion speed, friction factor and maximum shear stress on the extrusion were studied. The results show that with the increasing of initial extrusion temperature, the required extrusion force decreases, while the influence of the extrusion speed is opposite. The greater the extrusion speed, the greater the required extrusion force. The friction factor and the maximum shear stress are both positively correlated with the extrusion force.

基金项目:
国家重点研发计划 (2024YFF0618901)
作者简介:
作者简介:车洪艳(1977-),女,博士,正高级工程师 E-mail:chehy.2009@tsinghua.org.cn
参考文献:

 [1]刘正东,程世长,王起江,等.中国600 ℃火电机组用锅炉钢进展[M].北京:冶金工业出版社,2011.


 

Liu Z D, Cheng S C, Wang Q J, et al. Progress in Boiler Steels for 600 ℃ Thermal Power Units in China [M]. Beijing: Metallurgical Industry Press, 2011.

 

[2]杨素宝,刘正东,程世长.超超临界火电机组用关键锅炉钢性能分析[J].钢铁研究学报,2010,22(1):37-42.

 

Yang S B,Liu Z D,Cheng S C. Property analysis of key boiler steels used for ultrasupercritical power plants[J].Journal of Iron and Steel Research,2010,22(1):37-42.

 

[3]张伟.不同铬含量耐热钢的高温蒸汽氧化行为研究[D].北京:钢铁研究总院,2024.

 

Zhang W. Study on High Temperature Steam Oxidation Behavior of Different Chromium Content Heat Resistant Steels[D]. Beijing:Central Iron & Steel Research Institute,2024.

 

[4]朱祥龙,谢帅,董超群,等.基于响应曲面法的凹坑换热管挤压成形力学行为数值模拟[J].锻压技术,2023,48(4):110-120.

 

Zhu X L,Xie S,Dong C Q,et al. Numerical simulation of mechanical behaviour for dimpled heat exchange tube extrusion forming based on response surface method [J]. Forging & Stamping Technology,2023,48(4):110-120.

 

[5]于志强,宋丛飞. 316L方圆管热挤压工艺数值模拟[J].热加工工艺,2015,44(3):126-129.

 

Yu Z Q, Song C F. Numerical simulation of hot extrusion process for 316L innercircular outersquare tube[J].Hot Working Technology,2015,44(3):126-129.

 

[6]马晓辉. P91钢厚壁管立式挤压工艺模拟研究[D]. 北京:中国机械科学研究总院集团有限公司,2012.

 

Ma X H.Simulation and Experimental Research on Vertical Extrusion for P91 Thick Wall Steel Tube[D]. Beijing: China Academy of Machinery Science and Technology Group Co., Ltd., 2012.

 

[7]翟月雯.P91合金钢晶粒演化特征研究与厚壁管热挤压工艺数值模拟[D]. 北京:中国机械科学研究总院集团有限公司,2013.

 

Zhai Y W.A Study on Grain Evolution Characteristics of P91 Steel and Numerical of Hot Extrusion of Thick Wall Tube[D]. Beijing: China Academy of Machinery Science and Technology Group Co., Ltd., 2013.

 

[8]王瑞麒,李永堂,贾璐,等.P91厚壁管热挤压模具参数优化设计[J].塑性工程学报,2019,26(1):58-65.

 

Wang R Q, Li Y T, Jia L, et al. Optimal parameters design of hot extrusion die for P91 thickwalled pipe[J]. Journal of Plasticity Engineering,2019,26(1):58-65.

 

[9]贾璐,李永堂,惠恬静.大口径厚壁管均匀性热挤压工艺研究[J].塑性工程学报,2020,27 (5):132-141.

 

Jia L, Li Y T, Hui T J. Uniformization hot extrusion of heavy caliber thickwalled pipe[J].Journal of Plasticity Engineering,2020,27 (5):132-141.

 

[10]高润哲,雷步芳,张翔宇,等.大口径厚壁管热挤压模具磨损模型的建立[A].第九届全国地方机械工程学会学术年会论文集[C]. 郑州,2019.

 

Gao R Z, Lei B F, Zhang X Y, et al. Establishment of a wear model for hot extrusion dies of largediameter thickwalled tubes[A]. Proceedings of the 9th National Academic Annual Meeting of Local Mechanical Engineering Societies[C]. Zhengzhou, 2019.

 

[11]贾璐,李永堂,李振晓. 基于ABAQUS的铸态耐热合金钢热挤压成形数值模拟研究[J].精密成形工程,2016,8(5):108-115.

 

Jia L,Li Y T, Li Z X.The numerical simulation based on ABQUS for extrusion forming of cast heatresisting alloy steel [J].Journal of Netshape Forming Engineering,2016,8(5):108-115.

 

[12]Hsiang S H, Lin Y W. Optimization of the extrusion process for magnesium alloy sheets using the fuzzy-based taguchi method[J]. The Arabian Journal for Science and Engineering, 2009,34(1C):175-185.

 

[13]Hsiang S H, Lin Y W. Application of fuzzy theory to predict deformation behaviors of magnesium alloy sheets under hot extrusion [J].Journal of Material Processing Technology, 2008,201(1-3):138-144.

 

[14]Guo L G, Dong K K, Zhang B J, et al. Dynamic recrystallization rules in needle piercing extrusion for AISI304 stainless steel pipe[J].Transactions of Nonferrous Metals Society of China,2012,22:s519-s527.

 

[15]李春雨,邱春林.304不锈钢热挤压过程中动态再结晶数值模拟研究[J].锻压技术,2024,49(10):56-64,74.

 

Li C Y,Qiu C L.Numerical simulation study on dynamic recrystallization during hot extrusion of 304 stainless steel[J]. Forging & Stamping Technology,2024,49(10):56-64,74.

 

[16]李攀,罗建国,卜祥丽,等,大口径厚壁管道热挤压成形过程微观组织模拟及试验研究[J]. 塑性工程学报,2019,26 (3):169-178.

 

Li P,Luo J G,Pu X L,et al.Simulation and experimental study on microstructure of large diameter and thick wall pipes during hot extrusion forming process[J].Journal of Plasticity Engineering, 2019,26 (3):169-178.

 

[17]Ockewitz A, Sun D Z, Andrieux F. Development of a numerical method for simulation of aluminum extrusion processes with modeling of microstructure[J]. Key Engineering Materials, 2012,491:257-264.

 

[18]Sun D Z, Ockewitz A, Trondl A. Simulation of extrusion processes of aluminum profiles with modeling of microstructure[A]. International Conference on Aluminum Alloys ICAA16[C]. Montreal,2018.

 

[19]Souli M,Ouahsine A,Lewin L.ALE formulation for fluidstructure interaction problems[J].Computer Methods in Applied Mechanics and Engineering,2000,190(5):659-675.

 

[20]Messahel R.ALE and SPH Formulations for Fluid Structure Interaction: Shock Waves Impact[D]. Lille:cole doctorale Sciences pour lingénieur, 2016.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9