[1] 龚殿尧, 徐建忠, 刘相华, 等. 热连轧带钢终轧温度控制样本跟踪策略[J]. 东北大学学报(自然科学版), 2006, 27(8):883-886.
Gong D Y, Xu J Z, Liu X H, et al. Sample tracking strategy for finish rolling temperature control of hot-rolled strip[J]. Journal of Northeastern University (Natural Science), 2006, 27(8): 883-886.
[2] 周进, 沈丙振, 韩志强, 等. 精轧区热轧带钢温度场的数值模拟[J]. 钢铁研究学报, 2003, 15(2): 14-18.
Zhou J, Shen B Z, Han Z Q, et al. Numerical simulation on temperature field of hot strip in finish rolling process[J]. Journal of Iron and Steel Research, 2003, 15(2): 14-18.
[3] 刘玠, 杨卫东, 刘文仲. 热轧生产自动化技术[M]. 2版. 北京: 冶金工业出版社, 2017.
Liu J, Yang W D, Liu W Z. Automation Technology for Hot Rolling Production[M]. 2nd Edition. Beijing: Metallurgical Industry Press, 2017.
[4] 龚殿尧, 徐建忠, 薛文颖, 等. 热连轧带钢终轧温度预报模拟软件开发[J]. 钢铁研究学报, 2007(1): 60-62.
Gong D Y, Xu J Z, Xue W Y, et al. A simulation software for forecasting finish rolling temperature for hot strip mill[J]. Journal of Iron and Steel Research, 2007(1): 60-62.
[5] Laasraoui A, Jonas J J. Prediction of temperature distribution, flow stress and microstructure during the multipass hot rolling of steel plate and strip[J]. ISIJ International, 1991, 31(1): 95-105.
[6] Lee J H, Kwak W J, Sun C G, et al. Precision online model for prediction of strip temperature in hot strip rolling[J]. Ironmaking & Steelmaking, 2004, 31(2): 153-168.
[7] 邬晓方, 陈剑, 钱涛. 基于大数据及人工智能技术的电力行业技能等级评价方法[J]. 自动化技术与应用, 2024, 43(3): 165-168.
Wu X F, Chen J, Qian T. Skill level evaluation method of power industry based on big data and artificial intelligence technology[J]. Techniques of Automation and Applications, 2024, 43(3): 165-168.
[8] Breiman L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32.
[9] Svetnik V, Liaw A, Tong C, et a1. Random forest: A classification and regression tool for compound classification and QSAR modeling[J]. Journal of Chemical Information & Computer Sciences, 2003, 43(6): 19-47.
[10]陶新民, 刘福荣, 杜宝祥. 不均衡数据SVM分类算法及其应用[M]. 哈尔滨: 黑龙江科学技术出版社, 2011.
Tao X M, Liu F R, Du B X. SVM Classification Algorithm and Application for Imbalanced Data[M]. Harbin: Heilongjiang Science and Technology Press, 2011.
[11]王青天, 孔越. Python金融大数据风控建模实战: 基于机器学习[M]. 北京: 机械工业出版社, 2020.
Wang Q T, Kong Y. Modeling Practical of Python Financial Big Data Risk Control: Based on Machine Learning[M]. Beijing: China Machine Press, 2020.
[12]梅子行. 智能风控:原理、算法与工程实践[M]. 北京: 机械工业出版社, 2020.
Mei Z X. Intelligent Risk Control:Principles, Algorithms and Practice[M]. Beijing: China Machine Press, 2020.
[13]Chawla N V, Bowyer K W, Hall L O, et al. SMOTE: Synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16(1): 321-357.
[14]纪英俊, 勇晓玥, 刘英林, 等. 基于随机森林的热轧带钢质量分析与预测方法[J]. 东北大学学报(自然科学版), 2019, 40(1): 11-15.
Ji Y J, Yong X Y, Liu Y L, et al. Random forest based quality analysis and prediction method for hot-rolled strip[J]. Journal of Northeastern University (Natural Science), 2019, 40(1): 11-15.
|