网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
5456铝合金的高温流变行为和本构模型
英文标题:High-temperature rheological behavior and constitutive model for 5456 aluminum alloy
作者:李林 冯柯茹 何成奎 
单位:(达州职业技术学院 智能制造学院  四川 达州 635001) 
关键词:5456铝合金 高温流变行为 神经网络 预测精度 本构模型 
分类号:TG146;TG316
出版年,卷(期):页码:2024,49(12):224-232
摘要:

 为研究5456铝合金的高温流变行为及本构关系,首先在温度为573~773 K和应变速率为0.01~10 s-1的条件下进行了等温热压缩试验,获取了材料的流变曲线。然后,基于试验数据,建立了带应变补偿的Arrhenius(AH)、HenselSpittel(HS)和人工神经网络(BP)模型。最后,针对现有模型的不足,基于对数应力、温度、对数温度、对数应变速率和二次对数应变速率等参数的线性组合,提出了一种新本构模型。结果表明:随着应变的增加,5456铝合金的应力呈现出先迅速增加,再缓慢下降,最终趋于稳定的趋势;BP神经网络模型的预测精度最佳,其次是新模型,然后是AH模型和HS模型;新模型具有简洁的参数形式和良好的可解释性,适用于较高精度要求的数值仿真。

 

 Abstract: To investigate the high-temperature rheological behavior and constitutive relationship of 5456 aluminum alloy, isothermal compression experiments were conducted under the temperature 573-773 K and the strain rate 0.01-10 s-1, and the rheological curves of material were obtained. Then, based on the experimental datas, Arrhenius (AH) with strain compensation, Hensel-Spittel (HS) and Back-Propagation (BP) artificial neural network models were established. Finally, for the shortcomings of existing models, a new constitutive model was proposed based on the linear combinations of logarithmic stress, temperature, logarithmic temperature, logarithmic strain rate and quadratic logarithmic strain rate. The results indicate that with the increasing of strain, the stress of  5456 aluminum alloy shows a trend of first rapidly increasing, then slowly decreasing and finally stabilizing. In terms of prediction accuracy, BP neural network model performs the best, followed by the new model, then AH model, and finally HS model. However, the new model has a concise parameter form and good interpretability, making it suitable for the numerical simulation with high-precision reguirement.

 
基金项目:
基金项目:四川省科技厅重点研发项目(2023YFG0371);达州市科技局重点研发项目(21ZDYF0015)
作者简介:
作者简介:李林(1988-),男,本科,讲师 E-mail:Lilin15908486195@163.com
参考文献:

 
[1]黄淑萍, 黄亮, 陈绍文, 等. 退火温度对5456铝合金冷轧板材组织与性能的影响
[J]. 金属热处理, 2019, 44(8): 196-199.


 

Huang S P, Huang L, Chen S W, et al. Effects of annealing temperature on microstructure and mechanical properties of 5456 aluminum alloy cold rolled sheet
[J]. Heat Treatment of Metals, 2019, 44(8): 196-199.

 


[2]房洪杰, 刘慧, 孙杰, 等. 5xxx系铝合金研究现状及发展趋势
[J]. 材料导报, 2023, 37(21): 211-220.

 

Fang H J, Liu H, Sun J, et al. Research status and development trend of 5xxx series aluminum alloy
[J]. Materials Reports, 2023, 37(21): 211-220.

 


[3]刘昭昭, 王淼, 刘延辉. 镍基高温合金GH4133B本构模型及热加工图的热模拟研究
[J]. 航空材料学报, 2021, 41(6): 44-50.

 

Liu Z Z, Wang M, Liu Y H. Analysis of deformation behavior and microstructure evolution for GH4133B superalloy based on isothermal compression test
[J]. Journal of Aeronautical Materials, 2021, 41(6): 44-50.

 


[4]李娜. 镍基高温合金热变形行为及热加工性能研究
[D].重庆:重庆大学,2021.

 

Li N. Study on Hot Deformation Behavior and Hot Workability of Nickelbased Superalloy
[D]. Chongqing:Chongqing University, 2021.

 


[5]郭乐乐, 陈学文, 周旭东, 等. 基于原位观测的Cr5合金钢HanselSpittel高温本构模型修正方法及试验验证
[J]. 塑性工程学报, 2021, 28(6): 88-95.

 

Guo L L, Chen X W, Zhou X D, et al. Correction method and experimental verification of HanselSpittel constitutive model of Cr5 alloy steel at high temperature based on insitu observation
[J]. Journal of Plasticity Engineering, 2021, 28(6):88-95.

 


[6]尹小燕, 骆静, 朱杰. 基于HanselSpittel模型的齿环用HAl61-4-3-1合金本构模型构建
[J].重庆理工大学学报(自然科学), 2021, 35(1):111-117,167.

 

Yin X Y, Luo J, Zhu J. Construction of hightemperature constitutive model of HAl61-4-3-1 alloy for synchronizer ring based on HanselSpittel mode
[J]. Journal of Chongqing University of Technology (Natural Science), 2021, 35(1):111-117,167.

 


[7]Senthilkumar V,Balaji A,Arulkirubakaran D. Application of constitutive and neural network models for prediction of high temperature flow behavior of Al/Mg based nanocomposite
[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(6):1737-1750.

 


[8]Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures
[J]. Engineering Fracture Mechanics,1983,21:541-547.

 


[9]林木森, 庞宝君, 张伟, 等. 5A06铝合金的动态本构关系实验
[J]. 爆炸与冲击, 2009, 29(3): 306-311.

 

Lin M S, Pang B J, Zhang W, et al. Experimental investigation on a dynamic constitutive relationship of 5A06 alloy
[J]. Explosion and Shock Waves, 2009, 29(3): 306-311.

 


[10]张晓蕾,陈思达,王子健.5052铝合金本构模型和断裂模型研究
[J].模具工业,2024,50(8):27-35.

 

Zhang X L, Chen S D, Wang Z J. Study on constitutive model and fracture model of 5052 aluminum alloy
[J]. Die & Mould Industry, 2024,50(8):27-35.

 


[11]毕宝鹏, 王勇, 孙梦莹. 5A06铝合金超塑性变形力学特性
[J]. 塑性工程学报, 2015, 22(2): 62-67.

 

Bi B P, Wang Y, Sun M Y. Mechanical behavior of aluminum alloy 5A06 under superplastic deform
[J]. Journal of Plasticity Engineering, 2015, 22(2): 62-67.

 


[12]李彦斌, 何珞玉, 李国钧, 等. 5A06铝合金高精度唯象本构模型的快速构建
[J]. 塑性工程学报, 2023, 30(7): 127-137.

 

Li Y B, He L Y, Li G J, et al. Rapid construction of high precision phenomenological constitutive model for 5A06 aluminum alloy
[J]. Journal of Plasticity Engineering, 2023, 30(7): 127-137.

 


[13]Wang J, Xiao G Q, Zhang J S. A new constitutive model and hot processing map of 5A06 aluminum alloy based on hightemperature rheological behavior and higherorder gradients
[J]. Materials Today Communications, 2023, 36: 106502.

 


[14]朱振华. 5A30铝合金高温压缩变形行为的研究
[D].广州:广东工业大学,2011.

 

Zhu Z H. Study on the Compression Deformation Behaviors of 5A30 Aluminum Alloy at Elevated Temperature
[D].Guangzhou:Guangdong University of Technology, 2011.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9