网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
GH3536板材电脉冲触发含能材料冲击成形的胀形变形行为
英文标题:Bulging deformation behavior of GH3536 sheet in electricpulse triggered energetic-material forming
作者:刘龙雨1 李昊桦1 韩思雨1 谢雪云1 林俊峰1 2 于海平1 2 3 
单位:(1.哈尔滨工业大学 材料科学与工程学院 黑龙江 哈尔滨 150001 2.哈尔滨工业大学 金属精密热加工国家级重点实验室   黑龙江 哈尔滨 150001 3.哈工大苏州研究院 江苏 苏州 215104) 
关键词:电液成形 含能材料 GH3536高温合金 高速率变形 动态变形行为 
分类号:TG39
出版年,卷(期):页码:2024,49(12):41-51
摘要:

 针对GH3536高温合金板材在室温下成形难度大的问题,采用电脉冲触发含能材料冲击成形(ETEF)工艺,研究了GH3536高温合金板材的胀形变形行为。首先,通过准静态拉伸和动态拉伸实验确定了GH3536高温合金的应变率敏感性和J-C模型,在高应变速率下,其抗拉强度和伸长率明显提升。其次,进行了不同质量含能材料的ETEF实验和电液成形(EHF)实验,在相同胀形高度下,ETEF试样相比于EHF试样应变集中区明显拓宽,最大主应变和壁厚减薄率降低。最后,借助ANSYS/LS-DYNA软件和J-C模型建立了GH3536高温合金板材的ETEF数值模型,模拟结果显示,板材在圆角区先于中心区达到最大变形,Y向(竖直方向)速度在变形过程中有二次提升,使得板材高速变形的时间增加,证明了ETEF具有“保压”效果,且等效塑性应变云图呈圆形,板材变形更加均匀。

 

 Addressing the issue of difficulty forming for super alloy GH3536  sheet at room temperature, the electric-pulse triggered energetic-material forming (ETEF) process was used to investigate the bulging deformation behavior of super alloy GH3536 sheet under this process.Firstly,the strain rate sensitivity and J-C model of super alloy GH3536 were determined through quasi-static tensile and dynamic tensile experiments. At high strain rate, its tensile strength and elongation were significantly improved. Secondly,the ETEF experiment of different masses of energetic materials and the electro-hydraulic forming (EHF) experiment were carried out. At the same bulging height, the strain concentration zone of ETEF specimens is significantly widened compared to EHF specimens, with a decrease in maximum principal strain and a decrease in thinning rate. Finally, with the help of ANSYS/LS-DYNA software and J-C model, an ETEF numerical model of super alloy GH3536 sheet was established. The simulation results show that the sheet reaches the maximum deformation in the rounded corner area before the center area, and the velocity along the Y-direction (vertical direction) increases again during the deformation process, which increases the time of high-speed deformation for the sheet. It has been proven that ETEF has a “pressure holding” effect, and the equivalent plastic strain cloud map is circular, resulting in more uniform deformation of the sheet metal.

 
基金项目:
基金项目:国家自然科学基金面上资助项目(52175304)
作者简介:
作者简介:刘龙雨(2000-),男,硕士研究生 E-mail:18853762790@163.com 通信作者:于海平(1972-),男,博士,教授 E-mail:haipingy@hit.edu.cn
参考文献:

 
[1]刘超. 脉冲电流下CH4169合金高温变形行为及动态再结晶的研究
[D]. 沈阳: 东北大学, 2013.


 

Liu C. Study on High Temperature Deformation Behavior and Dynamic Recrystallization of CH4169 Alloy under Pulse Current
[D]. Shenyang: Northeastern University, 2013.

 


[2]Ni M, Chen C, Wang X J, et al. Anisotropic tensile behavior of in situ precipitation strengthened Inconel 718 fabricated by additive manufacturing
[J]. Materials Science and Engineering: A, 2017, 701(7): 344-351.

 


[3]刘大响, 程荣辉. 世界航空动力技术的现状及发展动向
[J]. 北京航空航天大学学报, 2002, 28 (5): 490-496.

 

Liu D X, Cheng R H. The current situation and development trend of world aviation power technology
[J]. Journal of Beihang University, 2002, 28 (5): 490-496.

 


[4]Xie D X, Zhuang W M, Wang N, et al. Review on hot stamping process and equipment of high strength steel sheet
[J]. Journal of Mechanical Engineering, 2022, 58 (20): 319-338.

 


[5]李晓光, 张猛, 矫志辉, 等. 一种基于预压弯的新型扭力梁回弹补偿方法
[J]. 锻压技术, 2022, 47(6):118-124.

 

Li X G, Zhang M, Jiao Z H, et al. A novel rebound compensation method for torsion beams based on pre bending
[J].Forging & Stamping Technology, 2022, 47 (6): 118-124.

 


[6]谢延敏, 张飞, 王子豪, 等. 基于渐变凹模圆角半径的高强钢扭曲回弹补偿
[J]. 机械工程学报, 2019, 55(2): 91-97.

 

Xie Y M, Zhang F, Wang Z H, et al. High strength steel torsion rebound compensation based on gradient concave die fillet radius
[J]. Journal of Mechanical Engineering, 2019, 55 (2): 91-97.

 


[7]Golovashvhenko S F, Gillard A J, Mamutov A V, et al. 

Formability of dual phase steels in electrohydraulic forming
[J]. Journal of Materials Processing Technology, 2013, 213(7): 1191-1212.

 


[8]Ahmed M, Kumar D R, Nabi M. Enhancement of formability of AA5052 alloy sheets by electrohydraulic forming process
[J]. Journal of Materials Engineering and Performance, 2017, 26: 439-452.

 


[9]Yu H P, Zheng Q L. Forming limit diagram of DP600 steel sheets during electrohydraulic forming
[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104: 743-756.

 


[10]Golovashchenko S F, Mamutov A V, Mamutov V S, et al. Application of Electrohydraulic Forming for Low Volume and Prototype Parts
[M]. Columbus:Ohio State University, 2018.

 


[11]Golovashchenko S F, Bessonov N M, Ilinich A M. Twostep method of forming complex shapes from sheet metal
[J]. Journal of Materials Processing Technology, 2011, 211 (5): 875-885.

 


[12]于海平, 孙立超, 张旭. 铝合金管坯电液成形试验研究
[J]. 锻压技术, 2016, 41(3): 51-57.

 

Yu H P, Sun L C, Zhang X. Experimental study on electrohydraulic forming of aluminum alloy tube blank
[J]. Forging & Stamping Technology, 2016, 41 (3): 51-57.

 


[13]Rohatgi A, Stephens E V, Soulami A. Experimental characterization of sheet metal deformation during electrohydraulic forming
[J]. Journal of Materials Processing Technology, 2011, 211 (11): 1824-1833.

 


[14]Zhang Y M, Qiu A C, Zhou H B, et al. Research progress in electrical explosion shockwave technology for developing fossil energy
[J]. High Voltage Engineering, 2016,42(4): 1009-1017.

 


[15]Yu H P, Xie X Y, Zheng Q L. A novel method of processing sheet metals: Electricpulse triggered energetic materials forming
[J]. Journal of Materials Processing Technology, 2021, 295: 117192.

 

 


[16]GB/T 228.1—2021,金属材料拉伸试验第1部分:室温试验方法
[S].

 

GB/T 228.1—2021, Tensile test—Metallic materials—Part 1: Room temperature test method
[S].

 


[17]Fan X Z, Li X, Fu J, et al. Thermal decompositions of ammonium perchlorate of various granularities
[J]. Acta Chimica Sinica, 2009, 67 (1): 39-44.

 


[18]Woo M A, Song W J, Kang B S, et al. Evaluation of formability enhancement of aluminum alloy sheet in electrohydraulic forming process with freebulge die
[J]. The International Journal of Advanced Manufacturing Technology, 2019, 101: 1085-1093. 

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9