网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English今天是:2025年05月11日 星期天
晶粒细化对Fe-Mn-C系孪晶诱发塑性钢动态应变时效行为的影响
英文标题:Effect of grain refinement on dynamic strain aging behavior for Fe-Mn-C twinning-induced plasticity steel
作者:王伟1 刘帅2 孙威杰2 黄玖龙2 李冬冬2 
单位:1.滦南县职业教育中心 基础部  2.华北理工大学 冶金与能源学院 
关键词:高锰钢 孪晶诱发塑性钢 晶粒尺寸 锯齿流变 Portevin-Le Chátelier效应 
分类号:TG142.1
出版年,卷(期):页码:2024,49(11):210-216
摘要:

 利用室温单向拉伸实验,结合数字图像相关(DIC)、金相组织观察、X射线衍射(XRD)等检测手段,研究了晶粒细化对Fe-16Mn-0.6C钢的拉伸性能、锯齿流变、Portevin-Le Chátelier(PLC)变形带演化的影响。结果表明:随着晶粒尺寸的减小,实验钢的屈服强度、抗拉强度升高,加工硬化数值升高;晶粒细化使动态应变时效(DSA)锯齿幅度显著增大,细晶粒钢产生更加强烈的动态应变时效行为;采用DIC观察发现,与粗晶粒钢相比,细晶粒钢中PLC变形带的应变集中程度更高,但相同应变下细晶粒钢中PLC变形带的运动速率低于粗晶粒钢。利用XRD分析发现,晶粒细化促进位错增殖,获得高密度位错组织,可能是其具有更强烈的动态应变时效现象及加工硬化能力的主要原因。

 The influences of grain refinement on the tensile properties, serrated rheology and PLC band evolution of Fe-16Mn-0.6C steel were investigated by uniaxial tensile experiments at room temperature, combining with digital image correlation (DIC), metallographic observation, X-ray diffraction (XRD) and other detection methods. The results indicate that with the decreasing of grain size, the yield strength and tensile strength of Fe-16Mn-0.6C steel are increased, and the work hardening value is increased. Grain refinement significantly increases the serration amplitude of dynamic strain aging (DSA), resulting in stronger dynamic strain aging behavior in fine-grained steel. Using DIC, it′s observed that the strain concentration of PLC bands in fine-grained steel is higher, but the moving rate of PLC bands is lower than that in coarse-grained steel at the same strain. Through XRD analysis, it′s found that the grain refinement promotes dislocation proliferation and the high-density dislocation structure is obtained, which may be the main reason for its stronger phenomenon of dynamic strain aging and work hardening ability.

基金项目:
河北省自然科学基金资助项目(E2021209080);河北省中央引导地方科技发展资金资助项目(236Z1014G);唐山市科技局资助项目(23130206E);华北理工大学重点科研项目(ZD-ST-202310-23)
作者简介:
作者简介:王伟(1973-),男,学士,高级讲师 E-mail:476106582@qq.com 通信作者:刘帅(1988-),男,博士,副教授 E-mail:sliu_ysu@163.com
参考文献:

 [1]张清郁. 车用DP780高强钢板热冲压成形数值模拟及模具磨损[J]. 锻压技术,2022,47(8):35-40.


Zhang Q Y. Numerical simulation of hot stamping and mold wear of DP780 high strength steel plate for automobile[J]. Forging & Stamping Technology,2022,47(8):35-40.

[2]De Cooman B C, Estrin Y,  Kim S K. Twinning-induced plasticity (TWIP) steels[J]. Acta Mater., 2018, 142: 283-362.

[3]Bouaziz O, Allan S, Scott C P, et al. High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships[J]. Current Opinion in Solid State & Materials Science, 2011, 15(4): 141-168.

[4]Yang H K, Zhang Z J, Zhang Z F, et al. Comparison of work hardening and deformation twinning evolution in Fe-22Mn-0.6C-(1.5Al) twinning-induced plasticity steels[J]. Scripta Materialia, 2013, 68(12): 992-995.

[5]Bouaziz O, Allain S, Scott C, et al. Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels[J]. Scripta Materialia, 2008, 58: 484-487.

[6]Dastur Y N, Lesliee W C. Mechanism of work hardening in hadfield manganese steel[J]. Metallurgical and Materials Transactions A, 1981, 12(5): 749-759.

[7]Qian L H, Guo P C, Zhang F C, et al. Abnormal room temperature serrated flow and strain rate dependence of critical strain of a Fe-Mn-C twin-induced plasticity steel[J]. Materials Science & Engineering: A, 2013, 561: 266-269.

[8]Lee S J, Kim J, Kane S N, et al. On the origin of dynamic strain aging in twinning-induced plasticity steels[J]. Acta Materialia, 2011, 59: 6809-6819.

[9]Jin J E, Lee Y K. Effects of Al on microstructure and tensile properties of C-bearing high Mn TWIP steel[J]. Acta Materialia, 2012, 60: 1680-1688.

[10]Li D D, Qian L H, Wei C Z, et al. The role of Mn on twinning behavior and tensile properties of coarse-and fine-grained Fe-Mn-C twinning-induced plasticity steels[J]. Materials Science & Engineering A, 2020, 789(prepublish). 

[11]Hong S, Shin S Y, Lee J, et al. Serration phenomena occurring during tensile tests of three high-manganese twinning-induced plasticity (TWIP) steels[J]. Metallurgical and Materials Transactions A, 2014, 45: 633-645.

[12]Min J Y, Lin J P, Sun B, et al. Effect of strain rate on spatio-temporal behavior of Portevin-Le Chtelier bands in a twinning induced plasticity steel[J]. Mechanics of Materials, 2014, 68: 164-175.

[13]Ranc N, Wanger D. Experimental study by pyrometry of Portevin-Le Chtelier plastic instabilities—Type A to type B transition[J]. Materials Science and Engineering: A, 2008, 474: 188-196.

[14]Renard K, Ryeland T S, Jacques P J, et al. Characterisation of the Portevin-Le Chtelier effect affecting an austenitic TWIP steel based on digital image correlation[J]. Materials Science & Engineering: A, 2010, 527: 2969-2977.

[15]Qian L, Guo P, Meng J, et al. Unusual grain-size and strain-rate effects on the serrated flow in FeMnC twin-induced plasticity steels[J]. Journal of Materials Science, 2013, 48: 1669-1674.

[16]Guitierrez-Urrutia I, Raabe D, et al. Grain size effect on strain hardening in twinning-induced plasticity steels[J]. Scripta Materialia, 2012, 66(12): 992-996.

[17]Kang S, Jung J G, Kang M, et al. The effects of grain size on yielding, strain hardening, and mechanical twinning in Fe-18Mn-0.6C-1.5Al twinning-induced plasticity steel[J]. Materials Science and Engineering: A, 2016, 652: 212-220.

[18]Jeong K, Jin J E, Jung Y S, et al. The effects of Si on the mechanical twinning and strain hardening of Fe-18Mn-0.6C twinning-induced plasticity steel[J]. Acta Materialia, 2013, 61: 3399-3410.

[19]Ueji R, Tsuchida N, Terada D, et al. Tensile properties and twinning behavior of high manganese austenitic steel with fine-grained structure[J]. Scripta Materialia, 2008, 59(9): 963-966.

[20]Dini G, Najafizadeh A, Ueji R, et al. Tensile deformation behavior of high manganese austenitic steel: The role of grain size[J]. Materials and Design, 2010, 31(7): 3395-3402.

[21]Madivala M, Schwedt A, Prahl U, et al. Anisotropy and strain rate eects on the failure behavior of TWIP steel: A multiscale experimental study[J]. International Journal of Plasticity, 2019, 115: 178-199.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9