网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于摩擦与温升修正的Cu-Sn合金本构模型
英文标题:Constitutive model of Cu-Sn alloy based on friction and temperature rise correction
作者:鱼祎雯 蔡军 李冲冲 李清阳 李洋 强凤鸣 
单位:西安建筑科技大学 冶金工程学院 功能材料加工国家地方联合工程研究中心 
关键词:Cu-Sn合金  热压缩  高温变形  Jonson-Cook本构模型  摩擦修正 
分类号:TG146.1+1
出版年,卷(期):页码:2024,49(11):182-188
摘要:

 采用Gleeble-3800热模拟试验机对Cu-Sn合金在变形温度为823~973 K、应变速率为0.001~10 s-1的条件下进行了热压缩试验。考虑到摩擦引起的鼓肚现象及摩擦热与变形热的影响,对试验结果进行修正,并建立材料的修正Johnson-Cook本构模型。结果表明:Cu-Sn合金的流动应力对应变速率和变形温度敏感;应力-应变曲线呈现动态再结晶型曲线特征。对修正Johnson-Cook本构模型的准确性进行了验证,发现修正Johnson-Cook本构模型计算得到的预测值与试验值的相关系数R为0.9848,平均相对误差AARE为7.936%,表明所构建的模型能较为精确地预测出Cu-Sn合金流动应力的变化。

 The hot compression tests for Cu-Sn alloy in the condition of the deformation temperature of 823-973 K and the strain rate of 0.001-10 s-1 were carried out by thermal simulation tester Gleeble-3800. Then, considering the bulging phenomenon caused by friction and the influence of friction heat and deformation heat, the test results were modified, and the modified Johnson-Cook constitutive model for the material was established. The results show that the flow stress of Cu-Sn alloy is sensitive to strain rate and deformation temperature and the stress-strain curve shows the characteristics of dynamic recrystallization curve. The accuracy of the modified Johnson-Cook constitutive model is verified, and the values of correlation coefficient R and average absolute relative error AARE between the predicted value calculated by the modified Johnson-Cook constitutive model and the test value are 0.9848 and 7.936%, respectively, indicating that the constructed model can accurately predict the change of flow stress for Cu-Sn alloy.

基金项目:
国家重点研发计划(2022YFB3804001);国家自然科学基金资助项目(52374400);陕西省教育厅产业化项目(21JC020)
作者简介:
作者简介:鱼祎雯(2001-),女,硕士研究生 E-mail:1273122940@qq.com 通信作者:强凤鸣(1992-),女,博士,讲师 E-mail:qiangfengming@126.com
参考文献:

 [1]李晓宇. 铜锡合金筒形件热旋压成形微观组织演变规律研究[D]. 太原:中北大学,2023.


Li X Y. Study on Microstructure Evolution of Cu-Sn Alloy Cylindrical Parts During Hot Spinning Forming[D]. Taiyuan:North University of China,2023.

[2]高帅. 铜锡合金筒形件热旋压成形数值模拟及试验研究[D]. 太原:中北大学,2021.

Gao S. Study on Numerical Simulation and Experimental Study on the Forming of Hot Spinning Cu-Sn Alloy Cylinder[D]. Taiyuan:North University of China,2021.

[3]王静波. 半固态CuSn10P1合金热压缩变形行为及其组织演变研究[D]. 昆明:昆明理工大学,2019.

Wang J B. Hot Compression Deformation Behavior and Microstructure Evolution of Semi-solid CuSn10P1 Alloy[D]. Kunming:Kunming University of Science and Technology,2019.

[4]高伟锋,冯再新,薛臣,等. 铜锡合金不同热挤压温度下的组织分析和性能变化[J]. 热加工工艺,2019,48(7):54-57.

Gao W F, Feng Z X, Xue C,et al. Microstructure analysis and properties change of Cu-Sn alloy at different hot extrusion temperatures[J]. Hot Working Technology, 2019,48(7):54-57.

[5]肖寒,陈昊,崔鋆昕,等. 退火工艺对铸态ZCuSn10P1锡青铜组织性能的影响[J]. 稀有金属,2023,47(6):815-824.

Xiao H, Chen H, Cui Y X,et al. Microstructure and properties of as-cast ZCuSn10P1 tin bronze with different annealing process[J]. Chinese Journal of Rare Metals, 2023,47(6):815-824.

[6]王璐. Cu-Sn合金制备工艺及其微合金化改性研究[D]. 西安:西安理工大学,2020.

Wang L. Study on Preparation Technology and Microalloying Modification of Copper-tin Alloy[D]. Xi′an:Xi′an University of Technology,2020.

[7]冯巧丽. 高固溶度Cu-Sn合金的制备及组织与性能研究[D]. 西安:西安理工大学,2020.

Feng Q L. Study on Preparation, Microstructure and Properties of High-solid Solution Copper-tin Alloy[D]. Xi′an:Xi′an University of Technology,2020.

[8]刘少飞,屈银虎,王崇楼,等. 金属和合金高温变形过程本构模型的研究进展[J]. 材料导报,2018,32(13):2241-2251,2277.

Liu S F, Qu Y H, Wang C L,et al. Advances in constitutive models of metals and alloys during hot deformation[J]. Materials Reports, 2018,32(13):2241-2251,2277.

[9]张芳萍,成鑫尧,曹宇,等. 基于修正Johnson-Cook本构模型的2209双相不锈钢高温流变行为[J]. 锻压技术,2023,48(6):223-230.

Zhang F P, Cheng X Y, Cao Y,et al. High temperature rheological behavior of 2209 duplex stainless steel based on modified Johnson-Cook constructive model [J]. Forging & Stamping Technology, 2023,48(6):223-230.

[10]孙红磊,殷璟,马瑞,等. HPb59-1铜合金高温流变行为的本构模型[J]. 塑性工程学报,2022,29(7):157-164.

Sun H L, Yin J, Ma R,et al. Constitutive model of high-temperature flow behavior of HPb59-1 copper alloy[J]. Journal of Plasticity Engineering, 2022,29(7):157-164.

[11]Pu B, Song P, Li W B, et al. Plastic deformation behavior and constitutive modeling of Cu-50Ta alloy during hot compression[J]. Materials Research Express, 2022, 9(1): 016517.

[12]Wu D X, Long S, Wang S Y, et al. Constitutive modelling with a novel two-step optimization for an Al-Zn-Mg-Cu alloy and its application in FEA[J]. Materials Research Express, 2021, 8(11): 116511.

[13]Wang M H, Yang Y C, Tu S L, et al. A modified constitutive model and hot compression instability behavior of Cu-Ag alloy[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(4): 764-774.

[14]杨清相,蔡军,王快社,等. 基于修正Johnson-Cook本构模型的BFe10-1.6-1白铜合金高温流变行为[J]. 塑性工程学报,2022,29(11):145-152.

Yang Q X, Cai J, Wang K S,et al. High temperature flow behavior of BFe10-1.6-1 cupronickel alloy based on modified Johnson-Cook constitutive model[J]. Journal of Plasticity Engineering, 2022,29(11):145-152.

[15]Ebrahimi R, Najafizadeh A. A new method for evaluation of friction in bulk metal forming[J]. Journal of Materials Processing Technology, 2004, 152(2): 136-143.

[16]Mcqueen H J, Ryan N D. Constitutive analysis in hot working[J]. Materials Science and Engineering: A, 2002, 322(1-2): 43-63.

[17]周琳,刘运玺,陈玮,等. Ti-4Al-5Mo-6Cr-5V-1Nb合金的热变形行为及热加工图[J]. 稀有金属,2022,46(1):27-35.

Zhou L,  Liu Y X, Chen W,et al. Thermal deformation behavior and processing map of Ti-4Al-5Mo-6Cr-5V-1Nb alloy [J]. Chinese Journal of Rare Metals, 2022,46(1):27-35.

[18]罗锐,曹赟,邱宇,等. 基于BP人工神经网络喷射成形7055铝合金的本构模型[J]. 航空材料学报,2021,41(1):35-44.

Luo R, Cao Y, Qiu Y,et al. Constitutive model of spray formed 7055 aluminum alloy based on BP artificial neural network[J]. Journal of Aeronautical Materials, 2021,41(1):35-44.

[19]Lin Y C, Chen X M, Liu G. A modified Johnson-Cook model for tensile behaviors of typical high-strength alloy steel[J]. Materials Science & Engineering: A, 2010, 527(26): 6980-6986.

[20]赵昊. 24Si2Ni2Mn贝氏体钢高温变形行为及组织演变规律研究[D]. 哈尔滨:哈尔滨工业大学,2021.

Zhao H. Hot Deformation Behavior and Microstructure Evolution Law of 24Si2Ni2Mn Bainitic Steel[D]. Harbin:Harbin Institute of Technology,2021.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9