网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
VL型球笼筒形壳多向模锻工艺及坯料优化设计
英文标题:Multi-directional die forging process and billet optimization design on VL-type spherical cage cylinder shell
作者:徐潇1 付奎奎1 龚攀2 王永晓3 胡红磊1 李志松1 刘钊1 王欣1 
单位:1.上海电机学院 机械学院 2.华中科技大学 材料科学与工程学院 材料加工与模具技术全国重点实验室 3.山东理工大学 材料科学与工程学院 
关键词:VL型球笼筒形壳 可伸缩芯轴 多向模锻 自动脱模 飞边 
分类号:TG316
出版年,卷(期):页码:2024,49(4):26-34
摘要:

  VL型球笼筒形壳内表面分布有6条交叉的倾斜内球槽,导致其在传统模锻过程中脱模困难,为此,设计了带有可伸缩斜楔芯轴的锻造模具和具有垂直液压缸及3水平液压缸的多向模锻压机,实现了该零件多向模锻精密成形和自动脱模。同时,利用Deform对该过程中的材料流动行为和场量变化进行数值模拟分析,完成坯料形状优化设计,并对上述模拟结果进行了多向模锻实验验证。结果表明,花瓣状带有轴向波浪起伏的坯料可有效控制锻件的径向和轴向飞边,锻造中内球槽处多余材料被挤压至波浪状坯料波谷处,使锻件成形精度较高且有效降低成形压力,显著减少了锻件后续精整工时。该工艺流程相对简单、易实现,为内部结构复杂、难脱模零件的锻造生产提供了新途径。

 There are six intersecting inclined inner spherical grooves on the inner surface of VL-type spherical cage cylindrical shell, which make it difficult to demold in the traditional die forging process. Therefore, a forging die with a retractable tapered wedge mandrel and the multi-directional die forging press with vertical hydraulic cylinder and three horizontal hydraulic cylinders were designed, and the precision forming of multi-directional die forging and the automatic demolding were realized. At the same time, the numerical simulation analysis on the material flow behavior and the change of field in the process were analyzed by Deform to finish the optimization design of billet shape, and the multi-directional die forging experiments were carried out to verify the simulation results. The results indicate that the petal-shaped billet with axial waves can effectively control the radial and axial flashes of the forgings, and the extra material in the inner spnerical groove is extruded to the trough of wavy billet during forging, which improves the forming precision of forgings, decreases the forging load, and effectively reduce the subsequent finishing time of forgings. Thus, the process flow is relatively simple and easy to accomplish, which provides a new way for forging production of parts with complicated internal structure and difficult demolding.

基金项目:
上海市科委地方院校能力建设资助项目(21010500800, 23010501100,22010501000);国家自然科学基金资助项目(52205393);山东省自然科学基金资助项目(ZR2022QE263);上海市启明星扬帆项目(23YF1413900)
作者简介:
作者简介:徐潇(1992-),女,博士,讲师 E-mail: xuxiao@sdju.edu.cn 通信作者:王欣(1961-),男,博士,教授 E-mail:x.wang@forgewang.com
参考文献:

 [1]Cardozo W S, Weber H I.A compact formulation for constant velocity joint kinematics[J].Mechanism and Machine Theory,2018,121:1-14.


 

[2]安自仁.等速万向节滑套多工序温冷复合精密成形技术研究[D]. 合肥:合肥工业大学,2018.

 

An Z R. Research on Multiprocess Temperaturecooled Composite Precision Forming Technology of Constant Velocity Universaljoint Sliding Sleeve [D]. Hefei:Hefei University of Technology,2018.

 

[3]宋银生.VL星形套成形工艺及模具设计[J].锻造与冲压,2020,(9):37-40.

 

Song Y S. Forming process and die design of VL star sleeve[J].Forging & Metalforming, 2020,(9):37-40. 

 

[4]陈熠道,邓小龙.汽车等速万向节滑套反挤压工序分析及凸模结构优化[J].锻压技术,2022,47(7):206-212.

 

Chen Y D,Deng X L. Backward extrusion process analysis and punch structure optimization of sliding sleeve for automobile constant velocity universal joint[J].Forging & Stamping Technology, 2022,47(7):206-212.

 

[5]Zhu X X, Xu Y P, Zhou W X, et al. Research on parameter design method and motion characteristics of a ball cage flexible joint[J].Energies,2022, 15(20):7591-7591.

 

[6]陈凌翔, 李月超.汽车六角球头冷锻工艺优化与数值仿真[J].材料科学与工艺, 2020, 28(5):75-82.

 

Chen L X,Li Y C. Optimization and numerical simulation of cold forging process for automobile hexagonal ball head [J].Materials Science and Technology, 2020,28(5):75-82.

 

[7]郭嘉晨.基于数值模拟的等速万向节球笼锻造工艺优化[D].镇江,江苏大学,2018.

 

Guo J C. Forging Process Optimization of Constant Velocity Universaljoint Ball Cage Based on Numerical Simulation [D].Zhenjiang: Jiangsu University,2018.

 

[8]熊戈.汽车等速万向节的参数化设计与研究[D]. 武汉:武汉理工大学,2014.

 

Xiong G. Parametric Design and Research of Automotive Constant Velocity Universal Joint [D]. Wuhan:Wuhan University of Technology,2014.

 

[9]Hua H P, Zhou Y, Li X X, et al. Variation of wear behavior of H13 steel sliding against differenthardness counterfaces [J]. Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2015,229(6):763-770.

 

[10]段园培,张海涛,黄仲佳,等.基于DEFORM-3D的支撑销冷挤压成形数值模拟[J].热加工工艺,2013,42(9):125-130.

 

Duan Y P, Zhang H T, Huang Z J, et al. Numerical simulation of cold extrusion forming of support pin based on DEFORM-3D[J] Hot Working Technology, 2013,42(9):125-130.

 

[11]陈保山, 逯云杰. 一种连接传动件的锻造工艺仿真及优化[J]. 锻压技术, 2023, 48(3): 20-26.

 

Chen B S, Lu Y J. Simulation and improvement on forging process for a connecting transmission part[J]. Forging & Stamping Technology,2023,48(3):20-26.

 

[12]武欢,陈康,代先东,等.基于Deform二次开发的连杆折叠缺陷预测及优化[J].锻压技术,2022,47(2):12-18.

 

Wu H, Chen K, Dai X D, et al. Prediction and optimization on folding defect for connecting rod based on secondary development of Deform[J]. Forging & Stamping Technology, 2022,47(2):12-18.

 

[13]牛海侠,甘国强,李萍,等.基于DEFORM-3D的7075铝合金筒型件半固态成形有限元模拟及试验验证[J].稀有金属材料与工程,2022,51(5):1697-1704.

 

Niu H X, Gan G Q, Li P, et al. Finite element simulation and experimental verification of semisolid forming of 7075 aluminum alloy cylinder based on DEFORM-3D[J]. Rare Metal Materials and Engineering, 2022,51(5):1697-1704.

 
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9