网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
复杂热冲压模具型面的激光熔覆强化及摩擦磨损控制技术
英文标题:Laser cladding strengthening of complex hot stamping die surface and friction and wear control technology
作者:陈炜1 王逸凡1 刘杰1 曹一枢2 白瑛2 陈春刚2 张小计2 
单位:1. 江苏大学 2. 无锡曙光精密工业有限公司 
关键词:激光熔覆 摩擦磨损 热冲压模具 铁基粉末 钴基粉末 
分类号:TN249;TH117.1
出版年,卷(期):页码:2024,49(3):186-193
摘要:

由于服役条件恶劣,热冲压模具的工作型面容易产生磨损与裂纹,而传统强化方式在减小模具磨损的同时存在诸多限制。为了实现复杂模具型面的熔覆,通过机械手和变位机变姿实现了激光熔覆路径优化,并采用差温往复式摩擦磨损实验装置模拟了热冲压工况,分析了激光熔覆层的摩擦磨损性能。研究结果表明,铁基粉末与钴基粉末两种熔覆层均能有效减小摩擦因数与模面磨损量,其中Stellite 12钴基粉末的激光熔覆层的摩擦因数与磨损量最小。扫描电子显微镜观测发现,Fe901铁基粉末与Stellite 12钴基粉末的激光熔覆层表面出现的氧化层与化合物起到了润滑减磨作用,实现了模面磨损控制。

 ue to the bad service condition, the working surface of hot stamping die is easy to be worn and cracked, and the traditional strengthening methods have many limitations while reducing the die wear. Therefore, in order to achieve the cladding of complex die surface, the laser cladding path was optimized by changing the posture of manipulator and positioner, and the hot stamping condition was simulated by the differential temperature reciprocating friction and wear experimental device to analyze the friction and wear properties of laser cladding layer. The research results indicate that both cladding layers of Fe-based powder and Co-based powder effectively reduce the friction factors and the wear amount of die surface, and the laser cladding layer of Stellite 12 Co-based powder has the smallest friction factor and wear amount. Scanning electron microscopy observation reveals that the oxide layer and compound on the surfaces of laser cladding layers for Fe901 Fe-based powder and Stellite 12 Co-based powder play a role in lubricating and reducing wear, achieving the wear control of die surface.

基金项目:
2022年度无锡市“太湖之光”科技攻关(产业化关键技术攻关)项目(WX0304B010301220019PD)
作者简介:
作者简介:陈炜(1965-),男,博士,教授,E-mail:chen_wei@ujs.edu.cn
参考文献:

[1]李爽. 新型热冲压模具钢组织与高温摩擦磨损机理研究 [D].上海:上海大学, 2017.


 

Li S. The Study on Microstructure and High Temperature Friction and Wear Mechanism of New Type Hot Stamping Die Steel [D]. Shanghai:Shanghai University,2017.

 

[2]陈雪岩.基于CAE的冲压模具失效分析及再制造修复研究[D].芜湖:安徽工程大学,2018. 

 

Chen X Y. Research on Failure Analysis and Remanufacturing Repair of Stamping Die Based on CAE [D]. Wuhu:Anhui Polytechnic University,2018.

 

[3]Ferreira D F S, Vieira J S, Rodrigues S P, et al. Dry sliding wear and mechanical behaviour of selective laser melting processed 18Ni300 and H13 steels for moulds [J]. Wear, 2022, 488-489:204179.

 

[4]Seo J W, Kim J C, Kwon S J, et al. Effects of laser cladding for repairing and improving wear of rails [J]. International Journal of Precision Engineering and Manufacturing, 2019, 20(7): 1207-1217.

 

[5]Chen W, Peng Y C, Wang Y F, et al. Research on high-temperature friction and wear performances of Stellite 12 laser cladding layer against coated boron steels [J]. Wear, 2023, 520-521:204665.

 

[6]屈海艳, 魏昕, 吴鹏飞, 等. 模具钢表面激光熔覆镍基合金组织及性能的研究 [J]. 热加工工艺, 2023, 52(2): 112-115.

 

Qu H Y,Wei X,Wu P F,et al. Research on microstructure and properties of laser cladding nickel-based alloy on die steel surface [J]. Hot Working Technology,2023, 52(2): 112-115.

 

[7]刘立君,冯梦奎,王晓陆,等.超声辅助H13模具钢表面激光熔覆强化层组织分析[J].焊接学报,2021,42(6):85-90,96,102.

 

Liu L J, Ma M K, Wang X L, et al. Microstructure analysis of laser cladding strengthening layer on H13 die steel surface assisted by ultrasonic [J]. Transactions of the China Welding Institution, 2021, 42(6), 85-90,96,102.

 

[8]任德亮, 林齐, 李婷, 等. 冷作模具曲面激光熔覆修复工艺及路径研究 [J]. 表面技术, 2018, 47(3): 54-60.

 

Ren D L, Lin Q, Li T, et al. Laser cladding repair technology and path of cold-worked dies [J]. Surface Technology, 2018, 47(3): 54-60.

 

[9]黄勇, 孙文磊, 陈影, 等. 曲面塑料模具激光熔覆再制造快速加工路径生成方法 [J]. 中国表面工程, 2017, 30(5): 150-158.

 

Huang Y, Sun W L, Chen Y, et al. Rapid processing path generation method for curved surface plastic mold remanufacturing by laser cladding [J]. China Surface Engineering, 2017, 30(5): 150-158

 

[10]王鑫龙. 失效零件几何形貌检测与激光熔覆可修复性研究 [D]. 乌鲁木齐:新疆大学, 2018.

 

Wang X L. Research on Geometry Detection and Laser Cladding Repairability of Failure Parts [D]. Urumqi: Xinjiang University, 2018.

 

[11]Bourahima F, Helbert A L, Rege M, et al. Laser cladding of Ni based powder on a Cu-Ni-Al glassmold: Influence of the process parameters on bonding quality and coating geometry [J]. Journal of Alloys and Compounds, 2019, 771: 1018-1028.

 

[12]Calleja A, Tabernero I, Ealo J A, et al. Feed rate calculation algorithm for the homogeneous material deposition of blisk blades by 5-axis laser cladding [J]. The International Journal of Advanced Manufacturing Technology, 2014, 74(9-12): 1219-1228.

 

[13]曹鹏. 镀层超高强钢板与热冲压模面间的摩擦磨损行为研究 [D].镇江:江苏大学,2023.

 

Cao P. Research on Friction and Wear Behavior Between Coated Ultra-high Strength Steel and Hot Stamping Dieface [D]. Zhenjiang: Jiangsu University,2023.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9