网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
转炉出水口钢套充液拉深工艺优化有限元模拟
英文标题:
作者:陈健 钱健清 方进秀 陈继平 
单位:(安徽工业大学 冶金工程学院 安徽 马鞍山 243032) 
关键词:转炉出水口钢套 充液拉深 液室压力 斜底筒形件 壁厚分布 
分类号:TG394
出版年,卷(期):页码:2024,49(2):182-188
摘要:

 以转炉出水口钢套为研究对象,根据零件几何尺寸,利用UGNX12.0三维模型软件建立模型,并结合DYNAFORM有限元模拟软件,进行充液拉深成形仿真及试验研究。对成品两道次的充液拉深液室压力和半成品的过渡形式进行研究,提出了斜底筒形件过渡方式,并探究了斜角角度对壁厚分布的影响。结果表明:第1道次拉深液室压力采用两拐点加载,设置2 MPa初始反胀压力和25 MPa最大液室压力成形效果最好;第2道次拉深的最大液室压力选用30 MPa可以有效避免起皱和破裂缺陷的产生;与普通筒形件过渡方式相比,采用斜底筒形件过渡更有利于拉深变形,其中45°斜角过渡拉深的效果最佳。通过有限元仿真确定了合适的工艺参数,获得了质量合格的转炉出水口钢套产品。

 

 For the steel sleeve of converter outlet, according to the geometric dimension of part, the model was established by 3D modeling software UG NX12.0, and combined with finite element simulation software DYNAFORM, the simulation and experimental research on hydroforming was carried out. Then, the two-pass hydroforming liquid chamber pressure of finished product and the transition form of semi-finished product were studied, the transition method of cylindrical parts with inclined bottom was proposed, and the influence of bevel angle on the wall thickness distribution was explored. The results show that a two-inflection point loading path is used by the liquid chamber pressure in the finst pass of drawing, and the forming effect is best when setting an initial reverse expansion pressure of 2 MPa and a maximum liquid chamber pressure of 25 MPa. The maximum liquid chamber pressure of 30 MPa for the second pass of drawing can effectively avoid the generation of wrinkles and cracks. Compared with the transition method of ordinary cylindrical parts, the transition of cylindrical parts with inclined bottom is more conducive to deep drawing deformation, among which the 45° oblique angle transition has the best drawing effect. The appropriate process parameters are determined through finite element simulation, and a converter outlet steel sleeve product with qualified quality is obtained.

 
基金项目:
基金项目:安徽省教育厅重点项目(KJ2021A0356);安徽省自然科学基金资助项目(1908085QE229)
作者简介:
作者简介:陈健(1998-),男,硕士研究生
参考文献:

 
[1]吕明,薛魁,郭红民,等.转炉炼钢废钢质量控制及结构优化
[J].钢铁,2023,58(5):51-58.


 

Lyu M, Xue K, Guo H M, et al. Quality control and structure optimization of steel scrap in converter steelmaking process
[J]. Iron & Steel, 2023,58 (5): 51-58.

 


[2]吴明.提高转炉出钢口使用效果的生产实践
[J].炼钢,2016,32(1):20-22.

 

Wu M.Practice of improving the using effect of converter tapping hole
[J]. Steelmaking, 2016,32 (1): 20-22.

 


[3]焦大勇,赵建强,李玉波,等.深锥形件成形工艺及模具设计
[J].模具制造,2016,16(8):4-7.

 

Jiao D Y, Zhao J Q, Li Y B, et al. Deep conical workpiece forming technology and die design
[J].Die & Mould Manufacture, 2016,16 (8): 4-7.

 


[4]刘新,郭睦基,李登虎,等.弹壳拉深成形工艺分析及模具设计
[J].锻压技术,2022,47(12):81-86.

 

Liu X, Guo M J, Li D H, et al. Process analysis and die design on cartrideg deep drawing
[J]. Forging & Stamping Technology, 2022, 47 (12): 81-86.

 


[5]张华伟,李渊,吴佳璐.轧制差厚板筒形件充液拉深成形影响因素的灰色关联分析
[J].锻压技术,2023,48(2):62-67.

 

Zhang H W, Li Y, Wu J L. Grey relation analysis on influencing factors for hydroforming tailor rolled blank cylindrical parts
[J]. Forging & Stamping Technology, 2023,48 (2): 62-67.

 


[6]张在房,徐冯,孙习武.火箭贮箱箱底充液拉深成形工艺的多目标优化
[J].机械工程学报,2022,58(5):78-86.

 

Zhang Z F, Xu F, Sun X W.Multiobjective optimization of hydroforming process of rocket tank bottom
[J].Journal of Mechanical Engineering, 2022,58 (5): 78-86.

 


[7]苑世剑,刘伟,徐永超.板材液压成形技术与装备新进展
[J].机械工程学报,2015,51(8):20-28.

 

Yuan S J, Liu W, Xu Y C.New development on technology and equipment of sheet hydroforming
[J].Journal of Mechanical Engineering, 2015,51 (8): 20-28.

 


[8]于弘喆,姜秀玉,樊彬彬,等.双曲率薄壁铝合金盒形件充液成形工艺
[J].锻压技术,2023,48(2):94-101.

 

Yu H Z, Jiang X Y, Fan B B, et al. Hydroforming process on double curvature thinwalled aluminum alloy box part
[J]. Forging & Stamping Technology, 2023,48 (2): 94-101.

 


[9]白颖,牛博雅,赵婷婷,等.大曲率薄壁多环绕深筋内蒙皮充液成形方法
[J].塑性工程学报,2022,29(7):45-50.

 

Bai Y, Niu B Y, Zhao T T, et al. Hydroforming method of thinwalled inner skin with large curvature and multiple surrounding deep ribs
[J]. Journal of Plasticity Engineering, 2022, 29 (7): 45-50.

 


[10]Hashemi A, Gollo M H, Seyedkashi S M H. Process window diagram of conical cups in hydrodynamic deep drawing assisted by radial pressure
[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(9): 3064-3071.

 


[11]Shafaat M A, Abbasi M, Ketabchi M. Investigation into wall wrinkling in deep drawing process of conical cups
[J]. Journal of Materials Processing Technology, 2011, 211(11): 1783-1795.

 


[12]周永新,冯苏乐,杨学勤,等.大径厚比薄壁变曲率构件充液拉深成形技术
[J].锻压技术,2022,47(4):126-133.

 

Zhou Y X, Feng S L, Yang X Q, et al. Hydrodrawing technology for thinwalled variable curvature part with large diameter to thickness ratio
[J].Forging & Stamping Technology, 2022, 47 (4): 126-133.

 


[13]GB/T 228.1—2021,金属材料拉伸试验第1部分:室温试验方法
[S].

 

GB/T 228.1—2021, Metallic Materials—Tensile testing—Part 1:Method of test at room temperature
[S].

 


[14]GB/T 5027—2016,金属材料薄板和薄带塑性应变比(r值)的测定
[S].

 

GB/T 5027—2016, Metallic materials—Sheet and strip—Determination of plastic strain ratio
[S].

 


[15]徐永超,韩思雨,刘胜京.液室压力加载路径对5A06铝合金锥形件充液拉深成形的影响
[J].锻压技术,2022,47(12):38-43.

 ?





[16]刘胜京.5A06 铝合金锥形件充液拉深研究
[D].哈尔滨:哈尔滨工业大学,2011.




Liu S J.Investigation into Hydromechanical Deep Drawing of 5A06 Aluminum Alloy Conical Cup
[D]. Harbin: Harbin Institute of Technology, 2011.





[17]杨连发.冲压工艺与模具设计
[M].西安:西安电子科技大学出版社,2013.




Yang L F. Stamping Process and Die Design
[M]. Xi′an: Xidian University Press, 2013.





[18]李奇涵,李笑梅,王文广,等.油底壳充液拉深液室压力的数值模拟分析
[J].热加工工艺,2016,45(1):138-140.




 
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9