网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于晶体塑性有限元的AZ31镁合金室温变形过程织构及孪生演化
英文标题:Texture and twinning evolution for AZ31 magnesium alloy during room temperature deformation process based on crystal plasticity finite element
作者:周新亮 万本振 
单位:太原重工股份有限公司 
关键词:镁合金 晶体塑性有限元 织构演化 孪生 力学性能 
分类号:TG146.2+2
出版年,卷(期):页码:2024,49(1):228-235
摘要:

 研究了AZ31镁合金塑性变形过程中因不同晶体取向导致的各向异性和拉压不对称性,探索了塑性变形过程中织构演变规律、孪生和力学性能之间的关系。采用晶体塑性有限元建立具有不同晶体取向的AZ31镁合金模型,通过室温单轴压缩和拉伸实验相结合的方法,发现晶体的塑性变形行为在很大程度上取决于晶体取向,不同的晶体取向导致了镁合金塑性变形行为的各向异性,轴向屈服强度和抗拉强度高,径向屈服强度和抗拉强度低。镁合金塑性变形过程中,随着应变量的增加,孪晶激活体积分数不断上升,因不同加载方向导致晶粒c轴发生不同转动,径向孪晶激活体积分数高,轴向孪晶激活体积分数低;孪晶的激活直接导致了织构的极密度发生偏移,径向孪晶激活体积分数高,所以径向的织构的极密度偏移更大。在镁合金塑性变形过程中,出现明显孪晶的点与应力突变的点相吻合,当孪晶激活体积分数达到一定值时,应力发生突变,此时晶体取向发生变化,新的滑移系启动,反映了滑移和孪晶机制耦合对力学性能的影响。

 The anisotropy and tension-compression asymmetry caused by different crystal orientations during the plastic deformation process of AZ31 magnesium alloy were studied, and the relationship between the texture evolution rules, twinning and mechanical properties during the plastic deformation process was explored. Then, a model of AZ31 magnesium alloy with different crystal orientations was established by crystal plasticity finite element. Through a combination method of room temperature uniaxial compression and tension experiments, the results show that the plastic deformation behavior of crystals depends on the crystal orientation to a large extent, and the different crystal orientations lead to anisotropy in the plastic deformation behavior of magnesium alloy, with high axial yield strength and tensile strength and low radial yield strength and tensile strength. Furthermore, during the plastic deformation process of magnesium alloy, with the increasing of deformation, the volume fraction of twin activation increases continuously, because different loading directions lead to different rotation of grain c axis, the volume fraction of radial twin activation is high, and the volume fraction of axial twin activation is low. The activation of twin directly leads to a shift in the polar density of texture, and the volume fraction of radial twin activation is high, so the polar density shift of the radial texture is larger. During the plastic deformation process of magnesium alloy, the point where obvious twins appear coincides with the point where the stress suddenly changes. When the volume fraction of twin activation reaches a certain value, the stress suddenly changes. At this time, the crystal orientation changes and a new slip system is initiated, reflecting the impact of coupling slip and twinning mechanism on the mechanical properties. 

基金项目:
国家重点研发计划(2018YFB1307902)
作者简介:
作者简介:周新亮(1981-),男,学士,高级工程师 E-mail:18603516756@163.com
参考文献:

 [1]  魏增,张宝红,吴卓阳,等.室温多向压缩道次变形量对AZ80镁合金力学性能影响[J].精密成形工程,2023,15(1):79-85.


Wei Z,Zhang B H,Wu Z Y,et al. Effect of deformation amount of multi-directional compression passes at room temperature on mechanical properties of AZ80 magnesium alloy[J]. Journal of Netshape Forming Engineering,2023,15(1):79-85.

[2]  Li Y Y,Han T Z,Chu Z B,et al. Effect of strain path on mechanical behavior of AZ31 magnesium alloy[J]. Rare Metal Materials and Engineering,2022,51(8): 2785-2793.

[3]  Peng J H,Zhang Z,Cheng H H,et al. Ambient extrusion induced working hardening and their effect on mechanical properties in AZ31 hot-extrusion bar [J]. Materials Science & Engineering A,2022,832:142437.

[4]  韩修柱,田政,臧晓云,等.AZ31镁合金不同挤压速度下的组织演变及力学性能研究[J].精密成形工程,2022,14(6):10-19.

Han X Z,Tian Z,Zang X Y,et al. Microstructure evolution and mechanical properties of AZ31 magnesium alloy at different extrusion velocities[J]. Journal of Netshape Forming Engineering,2022,14(6): 10-19.

[5]  潘超,郎书红,周涛,等.初始晶粒尺寸对高温交叉轧制镁合金板材组织和力学性能的影响[J].精密成形工程,2021,13(3):83-88.

Pan C,Lang S H,Zhou T,et al. Effect of initial grain size on microstructures and mechanical properties of magnesium alloy sheets processed by cross rolling at high temperature[J]. Journal of Netshape Forming Engineering,2021,13(3): 83-88.

[6]  Li Y Y,Yang B W,Han T Z,et al. Effect of pre-deformation on microstructure characteristics,texture evolution and deformation mechanism of AZ31 magnesium alloy[J]. Materials Science & Engineering A,2022,845: 143234.

[7]  蒋小娟,胡蒙均,孙涛,等.基于粘塑性自洽模型6061铝合金厚板轧制过程模拟[J].锻压技术,2023,48(8):125-135.

Jiang X J,Hu M J,Sun T,et al. Simulation of rolling process of 6061 aluminum alloy thick plate based on viscoplastic self-consistent Model [J]. Forging & Stamping Technology,2023,48(8):125-135.

[8]  Wang W K,Chen W Z,Jung J Y,Asymmetry evolutions in microstructure and strain hardening behavior between tension and compression for AZ31 magnesium alloy[J]. Materials Science & Engineering A,2022,844: 143168.

[9]  刘筱,朱必武,李落星,等.挤压态AZ31镁合金热变形过程中的孪生和织构演变[J].中国有色金属学报,2016,26(2): 288-295.

Liu X,Zhu B W,Li L X,et al. Twinning and weaving evolution during thermal deformation of AZ31 magnesium alloy in extruded state[J]. Chinese Journal of Nonferrous Metals,2016,26(2): 288-295.

[10]Zhao L,Zhou B,Zhu W,et al. A comprehensive study on the mechanical behavior,deformation mechanism and texture evolution of Mg alloys with multi texture components[J]. Journal of Alloys and Compounds,2022,907:164342.

[11]Taylor G I,Elam C F. The distortion of an aluminum during a tensile test[J]. Royal Society,1923,102: 719.

[12]Hill R. The essential structure of constitutive laws for metal composites and polycrystals[J]. Journal of the Mechanics and Physics of Solids,1967,15(67):79-95.

[13]Rice J R. Inelastic constitutive relations for solids: An internal variable theory and its application to metal plasticity[J]. Journal of the Mechanics and Physics of Solids,1971,19(6):433-455.

[14]Asaro R J. Crystal plasticity[J]. Journal of Applied Mechanics,1984,50(4b):921-934.

[15]Peirce D,Asaro R J,Needleman A. An analysis of nonuniform and localized deformation in ductile single ystals[J]. Acta Materialia,1982,30(6): 1087-1119.

[16]Kalidindi S R. Incorporation of deformation twinning in crystal plasticity models[J]. Journal of the Mechanics and Physics of Solids,1998,46(2):267-290.

[17]Chin G Y,Hosford W F,Mendorf D R. Accommodation of constrained deformation in fee metals by slip and twinning[J]. Proceedings of the Royal Society,1969,309(1499):433-456.

[18]Vanhoutte P. Simulation of rolling and shear texture of brass by taylor theory adapted for mechanical twinning[J]. Acta Metallurgica,1978,26(4): 591-604.

[19]Zhang D,Li H,Guo X X,et al. An insight into size effect on fracture behavior of Inconel 718 cross-scaled foils[J]. International Journal of Plasticity,2022,153:103274.

[20]郑华雷,杨合,李宏伟. 纯钛压缩变形下的晶体塑性有限元分析[J]. 塑性工程学报,2013,20(1): 95-99.

Zheng H L,Yang H,Li H W. Finite element analysis of crystal plasticity under compression deformation of pure titanium[J]. Journal of Plasticity Engineering,2013,20(1): 95-99.

[21]唐建国. FCC金属不均匀滑移变形的织构多晶体有限元模拟[D].长沙:中南大学,2006.

Tang J G. Finite Element Simulation of Woven Polycrystals for Inhomogeneous Slip Deformation of FCC Metals[D]. Changsha: Central South University,2006.

[22]曹鹏,方刚,曾攀,等.多晶铜压缩过程中晶粒取向演化的塑性理论分析[J]. 金属学报,2007,43(9): 913-919.

Cao P,Fang G,Zeng P,et al. Plasticity theory analysis of grain orientation evolution during the compression of polycrystalline copper[J]. 

Acta Metallurgica Sinica,2007,43(9): 913-919. 

[23]刘相华,赵启林,陈守东. 极薄带轧制过程的晶体塑性有限元分析[J]. 轧钢,2018,35(5): 1-5.

Liu X H,Zhao Q L,Chen S D. Crystal plasticity finite element analysis of very thin strip rolling process[J]. Rolled Steel,2018,35(5): 1-5.

[24]Wang M,Xu X Y,Wang H Y,et al. Evolution of dislocation and twin densities in a Mg alloy at quasi-static and high strain rates[J]. Acta Materialia,2020,201(6): 102-113.

[25]Lan Y T,Zhong X C,Quan G F,et al. Crystal anisotropy of AZ31 magnesium alloy under uniaxial tension and compression[J]. Transactions of Nonferrous Metals Society of China,2015,25(1): 249-260.

[26]任伟杰. 镁合金弯曲变形不均匀性与孪生行为的晶体塑性有限元模拟[D].重庆:重庆大学,2020.

Ren W J. Finite Element Simulation of Crystal Plasticity for Bending Deformation Inhomogeneity and Twinning Behavior of Magnesium Alloy[D]. Chongqing: Chongqing University,2020.

 
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9