网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
轧制温度对深冷AZ31镁合金组织与性能的影响
英文标题:Influence of rolling temperature on microstructure and properties of cryogenically treated AZ31 magnesium alloy
作者:毛睿成1 卢立伟1 2 3 范宇田2 肖石良2 张家龙1 
单位:1.湖南科技大学 机电工程学院 2.湖南科技大学 材料科学与工程学院 3.江苏大洋精锻有限公司 
关键词:镁合金 轧制 深冷处理 微观组织 硬度 
分类号:TG146.2
出版年,卷(期):页码:2024,49(1):134-141
摘要:

 利用金相显微镜、X射线衍射仪和维氏硬度计研究了不同温度下轧制的深冷处理AZ31镁合金的组织与性能。结果显示:随着轧制温度的升高,轧制后深冷处理时镁合金所经历的激冷作用越强烈,镁合金发生的收缩越大;轧制温度为180~300 ℃时,镁合金的晶粒尺寸随轧制温度的升高变小,孪晶数量增多,并伴随有第二相析出,镁合金基面织构逐渐被弱化;轧制温度升高至360 ℃时,基面织构重新加强;硬度随轧制温度的升高先升高后降低,在300 ℃时硬度高达78.9 HV,这主要归因于细晶强化和第二相强化的作用;轧制温度达到420 ℃时,由于镁合金内部沿绝热剪切带出现裂纹,导致镁合金性能大幅下降。

 

 The microstructure and properties of cryogenically treated AZ31 magnesium alloy rolled at different temperatures were studied by metallographic microscopy, X-ray diffractometry and Vickers hardness tester. The results show that with the increasing of rolling temperature, the chilling effect experienced by the magnesium alloy during the cryogenic treatment after rolling is stronger, and the shrinkage of magnesium alloy is greater. When the rolling temperature is 180-300 ℃, the grain size of magnesium alloy becomes smaller with the increasing of rolling temperature, the number of twins increases, accompanied by the precipitation of the second phase, and the basal texture of magnesium alloy is gradually weakened. When the rolling temperature rises to 360 ℃, the basal texture is strengthened again. The hardness increases first and then decreases with the increasing of rolling temperature, and the hardness is as high as 78.9 HV at 300 ℃, which is mainly attributed to the effect of fine grain strengthening and second phase strengthening. When the rolling temperature reaches 420 ℃, the properties of magnesium alloy drop significantly due to the cracks appearing along the adiabatic shear band inside the magnesium alloy. 

基金项目:
国家自然科学基金资助项目(52174362,51975207);湘潭市创建国家创新型城市建设专项项目(CG-YB20221043);盐城市“黄海明珠人才计划”领军人才项目
作者简介:
作者简介:毛睿成(1995-),男,硕士研究生 E-mail:409353178@qq.com 通信作者:卢立伟(1983-),男,博士,教授 E-mail:cqulqyz@126.com
参考文献:

 [1]  武卫民,孙晨宇. 挤锻复合成形汽车高强镁合金的组织与性能[J]. 锻压技术,2022,47(12):27-30.


Wu W M, Sun C Y. Organization and properties of extrusion-forging composite formed automotive high-strength magnesium alloy[J]. Forging & Stamping Technology, 2022, 47(12): 27-30.

[2]  胡美些,狄石磊. 坯料预热方式对AZ80镁合金轮毂组织和性能的影响[J]. 锻压技术,2022,47(9):39-44.

Hu M X, Di S L. Effect of billet preheating mode on the organization and properties of AZ80 magnesium alloy wheels[J]. Forging & Stamping Technology, 2022, 47(9): 39-44.

[3]  李庆芬,邓彬,吴远志,等. 轧制应变量对AZ31镁合金组织与腐蚀性能的影响[J]. 锻压技术,2022,47(8):152-157.

Li Q F, Deng B, Wu Y Z, et al. Effect of rolling strain on the organization and corrosion properties of AZ31 magnesium alloy[J]. Forging & Stamping Technology, 2022, 47(8): 152-157.

[4]  卢立伟,康伟,黎小辉,等. 时效处理对Mg-Zn-Gd-Er稀土镁合金的组织和力学性能的影响[J]. 稀有金属,2022,46(9):1153-1162.

Lu L W, Kang W, Li X H, et al. Microstructure and mechanical properties of Mg-Zn-Gd-Er rare earth magnesium alloy via aging treatment[J]. Chinese Journal of Rare Metals, 2022, 46(9): 1153-1162.

[5]  Che B, Lu L W, Zhang J L, et al. Effects of cryogenic treatment on microstructure and mechanical properties of AZ31 magnesium alloy rolled at different paths[J]. Materials Science and Engineering A, 2022, 832: 142475.

[6]  Liu J W, Li G F, Chen D, et al. Effect of cryogenic treatment on deformation behavior of as-cast AZ91 Mg alloy[J]. Chinese Journal of Aeronautics, 2012, 25(6): 931-936.

[7]  Jiang Y, Chen D, Chen Z H, et al. Effect of cryogenic treatment on the microstructure and mechanical properties of AZ31 magnesium alloy[J]. Materials and Manufacturing Processes, 2010, 25(8): 837-841.

[8]  Mónica P, Bravo P M, Cárdenas D. Deep cryogenic treatment of HPDC AZ91 magnesium alloys prior to aging and its influence on alloy microstructure and mechanical properties[J]. Journal of Materials Processing Tech., 2017, 239: 297-302.

[9]  Gong X Y, Wu Z S, Zhao F, et al. Effect of deep cryogenic treatment on the microstructure and the corrosion resistance of AZ61 magnesium alloy welded joint[J]. Metals, 2017, 7(5): 179.

[10]Asl K M, Tari A, Khomamizadeh F. Effect of deep cryogenic treatment on microstructure, creep and wear behaviors of AZ91 magnesium alloy[J]. Materials Science and Engineering A, 2009, 523(1): 27-31. 

[11]Amini K, Akhbarizadeh A, Javadpour S. Investigating the effect of quench environment and deep cryogenic treatment on the wear behavior of AZ91[J]. Materials and Design, 2014, 54: 154-160. 

[12]Pu Z, Song G L, Yang S, et al. Grain refined and basal textured surface produced by burnishing for improved corrosion performance of AZ31B Mg alloy[J]. Corrosion Science, 2012, 57: 192-201.

[13]张丁非,戴庆伟,胡耀波,等. 镁合金板材轧制成型的研究进展[J]. 材料工程, 2009,(10): 85-90.

Zhang D F, Dai Q W, Hu Y B, et al. Advances in rolling and forming of magnesium alloy plates[J]. Materials Engineering, 2009, (10): 85-90.

[14]Lu L W, Liu C, Zhao J, et al. Modification of grain refinement and texture in AZ31 Mg alloy by a new plastic deformation method[J]. Journal of Alloys and Compounds, 2015, 628: 130-134.

[15]许芳艳. 轧制板材镁合金AZ31的再结晶行为[D]. 长沙:湖南大学, 2006.

Xu F Y. Recrystallization Behavior of Rolled Sheet Magnesium Alloy AZ31[D]. Changsha: Hunan University, 2006.

[16]Fatemi-Varzaneh S M, Zarei-Hanzaki A, Cabrera J M. Shear banding phenomenon during severe plastic deformation of an AZ31 magnesium alloy[J]. Journal of Alloys and Compounds, 2011, 509(9): 3806-3810. 

[17]Ion S E, Humphreys F J, White S H. Dynamic recrystallization and the development of microstructure during the high temperature deformation of magnesium[J]. Acta Metallurgica, 1982, 30(10): 1909-1919.

[18]Guo F, Zhang D F, Yang X S, et al. Evolution of microstructure and weave of AZ31 magnesium alloy during large strain hot rolling [J]. Transactions of Nonferrous Metals Society of China, 2015, 25(1): 14-21.

[19]毛萍莉, 刘超, 刘正, 等. AZ31镁合金中绝热剪切带的组织演变规律[J]. 稀有金属材料与工程, 2015, 44(5): 1181-1184. 

Mao P L, Liu C, Liu Z, et al. Organizational evolution of the adiabatic shear zone in AZ31 magnesium alloy[J]. Rare Metal Materials and Engineering, 2015, 44(5): 1181-1184.

[20]张宇. 轧制AZ31镁合金剪切带形成机理的研究[D]. 沈阳:东北大学, 2013.

Zhang Y. Study on the Formation Mechanism of Shear Zone of Rolled AZ31 Magnesium Alloy[D]. Shenyang: Northeastern University, 2013.

[21]陈鼎, 夏树人, 姜勇, 等. 镁合金深冷处理研究[J]. 湖南大学学报:自然科学版, 2008, 35(1): 62-65.

Chen D, Xia S R, Jiang Y, et al. Study on deep cooling treatment of magnesium alloy[J]. Journal of Hunan University: Natural Science Edition, 2008, 35(1): 62-65.

[22]Nave M D, Barnett M R. Microstructures and textures of pure magnesium deformed in plane-strain compression[J]. Scripta Materialia, 2004, 51(9): 881-885.

[23]郭超凡. 深冷处理对AZ31镁合金组织及性能的影响研究[D]. 长春:吉林大学, 2019. 

Guo C F. Study on the Effect of Deep Cooling Treatment on the Organization and Properties of AZ31 Magnesium Alloy[D]. Changchun: Jilin University, 2019.

[24]Fan Y T, Lu L W, Zhou T. et al. Improvement of the microstructure and microhardness of AQ80 magnesium alloy by repeated upsetting-extrusion[J]. Metals and Materials International, 2023, 29(10):3052-3065.

[25]Sadr M H, Jafarzadeh H. Characterization of AZ91 magnesium alloy processed by cyclic contraction/expansion extrusion using the experimental and micromechanical cellular automaton finite element approach[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2020, 234(11): 1417-1430.

[26]Kang W, Lu L W, Feng L B, et al. Effects of pre-aging on microstructure evolution and deformation mechanisms of hot extruded Mg-6Zn-1Gd-1Er Mg alloys[J]. Journal of Magnesium and Alloys, 2023, 11(1): 317-328.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9