网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
锻造操作机大车行走系统液压冲击改进研究
英文标题:Research on improvement of hydraulic impact on forging manipulator cart walking system
作者:赵梅香1 2 3 4 刘威1 2 3 4 张康宁1 2 3 4 王金鹏5 尚英军1 2 3 4 曹安宁1 2 3 4 
单位:1.西安兰石重工机械有限公司 2.兰州兰石重工有限公司 3.甘肃省金属塑性成型装备智能控制重点实验室 4.甘肃省大型快锻液压设备技术创新中心 5.兰州兰石能源装备工程研究院有限公司 
关键词:锻造操作机 大车行走 联通电磁阀 液压冲击 稳定性 定位精度 补偿控制策略 
分类号:TH137
出版年,卷(期):页码:2023,48(12):206-211
摘要:

 提出了一种在锻造操作机大车行走系统液压马达进出油口处设置一个联通电磁阀的改进方法,并结合联通电磁阀补偿控制策略,避免了因马达高压腔油压过高对马达造成的损伤,也避免了低压腔真空对马达的破坏,从而实现了主动控制两腔的压力冲击;并通过AMESim仿真平台对该改进方法进行仿真分析及对比论证,进一步了解了联通电磁阀的实时工作状态、马达A/B口的压力变化、大车行走速度和位移的工作曲线以及研究对象的控制机理。结果表明:在马达A/B口设置联通电磁阀,并采用联通电磁阀补偿控制策略后大车行走系统的定位精度更高、稳定性更高,并且减少了液压冲击和气蚀。

 An improved method of setting a connecting solenoid valve at the oil inlet and outlet ports of hydraulic motor for forging manipulator cart walking system was proposed, and combined with the compensation control strategy of connecting solenoid valve, the damage to the motor caused by the high pressure in the high pressure cavity of motor was avoided, and the damage caused by the vacuum in the low pressure cavity was avoided too, so the pressure impact of the two cavities was controlled actively. The improved method was simulated and compared by AMESim simulation platform, and the real-time working state of connecting solenoid valve, the pressure change at the A/B port of motor, the working curves of walking speed and displacement for cart, and the control mechanism of the research object were further understood. The results show thatafter setting a connecting solenoid valve at the A/B port of motorand adopting the compensation control strategy of connecting solenoid valve, the positioning accuracy and stability of the cart walking system are higher, and the hydraulic impact and cavitation are reduced.

基金项目:
作者简介:
作者简介:赵梅香(1987-),女,硕士,工程师 E-mail:1518983330@qq.com
参考文献:

 [1]赵勇,林忠钦,王皓,等.重型锻造操作机的操作性能分析[J].机械工程学报,2010,46(11):69-75.


Zhao Y,Lin Z Q,Wang H,et al.Manipulation performance analysis of heavy manipulators[J].Journal of Mechanical Engineering,2010,46(11):69-75. 

[2]傅新,徐明,王伟,等.锻造操作机液压系统设计与仿真[J].机械工程学报,2010,46(11):51-54.

Fu X,Xu M,Wang W,et al.Hydraulic system design and simulation of the forging manipulator[J].Journal of Mechanical Engineering,2010,46(11):51-54.

[3]李阁强,江兵,周斌,等.20 t锻造操作机液压控制系统[J].农业机械学报,2015,46(1):352-358.

Li G Q, Jiang B, Zhou B, et al.Hydraulic control system of 20 t forging manipulator[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015,46(1):352-358.

[4]江兵.锻造操作机机电液控制系统研究[D].洛阳:河南科技大学,2015.

Jiang B.The Research of Forging Manipulator Elrctro-hydraulic Control System[D].Luoyang: Henan University of Science and Technology,2015.

[5]朱汉银.锻造操作机液压系统能耗分析与节能控制研究[D].秦皇岛:燕山大学,2017.

Zhu H Y. Energy Consumption and Energy Saving Control of Hydraulic System for Forging Manipulator[D]. Qinhuangdao:Yanshan University,2017.

[6]马志刚,杨志怀,张晓丽,等.锻造操作机行走系统性能仿真分析[J].锻压技术,2022, 47(10):203-207.

Mang Z G, Yang Z H, Zhang X L, et al. Simulation analysis on performance of walking system for forging manipulator[J].Forging & Stamping Technology, 2022,47(10):203-207.

[7]刘晨荣,魏海涛,张晓丽,等.基于速度预测的锻造操作机大车定位控制研究[J].液压与气动,2022, 46(10):182-188.

Liu C R,Wei H T,Zhang X L, et al. Crane positioning control of forging manipulator based on speed prediction[J]. Chinese Hydraulics & Pneumatics, 2022,46(10):182-188.

[8]郝晓蓓.基于三角形速度规划的双锻造操作机大车行走同步控制方法[D].秦皇岛:燕山大学,2018.

Hao X B.Synchronization Control on Walking Hydraulic System of Dual Forging Manipulators Based on Triangular Velocity Planning[D].Qinhuangdao: Yanshan University,2018.

[9]桑育鑫.重载锻造操作机大车行走精度控制的研究[D].兰州:兰州交通大学,2017.

Sang Y X.Research on the Precision of Cart Movement Control of Heavy Load Forging Manipulator[D].Lanzhou:Lanzhou Jiaotong University,2017.

[10]王昕炜,苗荣霞.锻造操作机大车行走机构的单神经元自适应PID控制[J].西安工业大学学报,2014,34(12): 1012-1017.

Wang X W,Miao R X.Single neuron adaptive PID control of walking mechanism of forging manipulator cart[J].Journal of Xi′an Technological University,2014,34(12): 1012-1017.

 [11]刘杰.基于虚拟样机的锻造操作机阀控马达系统仿真研究[D].秦皇岛:燕山大学,2010.

Liu J. Simulation of Forging Manipulator Valve-controlled Motor System based on Virtual Prototype[D].Qinhuangdao:Yanshan University,2010.

[12]翟富刚,李瑞阳,袁龙,等.双锻造操作机大车行走系统控制方法探析[J].液压与气动,2019,(11):1-8.

Zhai F G, Li R Y, Yuan L, et al. Analysis on control method of walking system of dual forging manipulators [J]. Chinese Hydraulics & Pneumatics, 2019, (11): 1-8.

[13]翟富刚.液压锻造操作机多学科协同仿真研究[D].秦皇岛:燕山大学,2011.

Zhai F G. Multidisciplinary Collaborative Simulation Research on Hydraulic Forging Manipulator [D]. Qinhuangdao: Yanshan University, 2011.

[14]梁全,谢基晨,聂利伟.液压系统AMESim计算机仿真进阶教程[M].北京:机械工业出版社,2014.

Liang Q,Xie J C,Nie L W.Hydraulic System AMESim Computer Simulation Advanced Tutorial[M].Beijing:China Machine Press, 2014.

 
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9