网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
工艺参数对TC4钛合金高压气瓶无芯模热旋压塑性性能的影响
英文标题:Influence of process parameters on plastic properties for non-mandrel hot spinning of TC4 titanium alloy high-pressure gas cylinder
作者:魏巍1 罗雄1 范俊明2 陈刘斌2 吴明霞3 唐凯3 
单位:1.成都市特种设备检验检测研究院 2.成都格瑞特高压容器有限责任公司 3.四川大学 机械工程学院 
关键词:钛合金 高压气瓶 热旋压 进给比 旋压温度 
分类号:TG316.3
出版年,卷(期):页码:2023,48(12):142-150
摘要:

 使用DEFORM有限元软件对不同工艺参数条件下的TC4钛合金高压气瓶无芯模热旋压成形过程进行了模拟,研究了旋压温度、进给比和旋轮圆角半径对成形过程中塑性性能的影响。结果表明:旋压温度升高,而成形过程中气瓶表面所受的等效应力减小,而不同温度时各采样点的等效应变基本相同;进给比降低,等效应变增大,且对等效应力影响显著,进给比为3.0 mm·r-1时各采样点间的应力值变化较为均匀;旋轮圆角半径越小,等效应力在深度方向上减小的程度更大,半径R6080 mm时旋轮对气瓶表面产生的等效应力变化较大,R100 mm时的等效应力变化较小且工件具有更好的均匀性。综上所述,TC4钛合金高压气瓶的最佳热旋压工艺参数为:旋压温度为950 ℃、进给比为3.0 mm·r-1、旋轮圆角半径为100 mm

 The non-mandrel hot spinning process of TC4 titanium alloy high-pressure gas cylinders under different process parameter conditions was simulated by DEFORM finite element software, and the influences of spinning temperature, feed ratio and roller fillet radius on the plastic properties during the forming process were studied. The results show that when the spinning temperature increases, the equivalent stress on the gas cylinder surface during the forming process decreases, but the equivalent strains at each sampling point are basically the same at different temperatures. When the feed ratio decreases, the equivalent strain increases, and the effect on the equivalent stress is significant. When the feed ratio is 3 mm·r-1, the stress value changes are relatively uniform between the sampling points. The smaller the fillet radius of roller, the greater the reduction degree of equivalent stress in the depth direction, the change of the equivalent stress caused by the roller on the surface of gas cylinder is great when the radius R is 60 and 80 mm, and the change of the equivalent stress is small when R is 100 mm and the workpiece has better uniformity. In conclusion,  the optimal hot spinning process parameters for TC4 titanium alloy high-pressure gas cylinders are the temperature of 950 ℃, the feed ratio of 3 mm·r-1, and the roller fillet radius of 100 mm.

基金项目:
作者简介:
作者简介:魏巍(1982-),男,硕士,高级工程师 E-mail:18708185844@163.com 通信作者:唐凯(1992-),男,博士研究生 E-mail:tangkai0516@163.com
参考文献:

 [1]李立善, 于斌. TC4钛合金球形高压气瓶赤道缝电子束焊接研究[J]. 航天制造技术, 2009, (6):30-32.


Li L S, Yu B. Study of electron beam welding process for high-pressure sphere tank of TC4 titanium alloy [J]. Aerospace Manufacturing Technology, 2009, (6):30-32.

[2]于斌, 靳庆臣, 何俊,等. 高压球形气瓶焊缝结构设计与焊接工艺[J]. 宇航材料工艺, 2010, 40(4):30-32.

Yu B, Jin Q C, He J, et al. Welding line design and welding process of sphere high-pressure vessel[J]. Aerospace Materials & Technology, 2010, 40(4):30-32.

[3]那晓菲, 王卫民, 樊亚军,等. 超塑球形气瓶用TC4钛合金管材的制备工艺[A]. 第十四届全国钛及钛合金学术交流会论文集(下册)[C].上海:科学出版社,2010.

Na X F, Wang W M, Fan Y J, et al. Preparation technique of TC4 alloy pipe used for superplastic gas bottle[A]. Proceedings of the 14th National Academic Exchange Conference on Titanium and Titanium Alloys (Volume II)[C].Shanghai: Science Press,2010.

[4]张海, 欧阳瑞洁, 张永红,等. 钛合金气瓶疲劳试验壳体开裂失效分析[J]. 压力容器, 2021, 38(7): 77-80,86.

Zhang H, Ouyang R J, Zhang Y H, et al. Cracking failure analysis of a titanium alloy pressure vessel in hydraulic fatigue test [J]. Pressure Vessel Technology, 2021, 38(7): 77-80,86.

[5]陆子川, 张绪虎, 微石,等. 航天用钛合金及其精密成形技术研究进展[J]. 宇航材料工艺, 2020, 50(4):1-7.

Lu Z C, Zhang X H, Wei S, et al. Research progresses of titanium alloys and relevant precision forming technology for the aerospace industry [J]. Aerospace Materials & Technology, 2020, 50(4):1-7.

[6]方秀荣, 王自亮, 杨锦辉,等. TC4钛合金锻件疲劳寿命分析及其仿真模型修正[J]. 锻压技术, 2022, 47(6):1-9.

Fang X R, Wang Z L, Yang J H, et al. Fatigue life analysis and simulation model modification on TC4 titanium alloy forgings [J]. Forging & Stamping Technology, 2022, 47(6):1-9.

[7]Tseng J C, Huang W C, Chang W, et al. Deformations of Ti-6Al-4V additive-manufacturing-induced isotropic and anisotropic columnar structures[J]. Additive Manufacturing, 2020, 35:101322.

[8]Su J Q, Wang J Y, Mishra R S, et al. Microstructure and mechanical properties of a friction stir processed Ti-6Al-4V alloy[J]. Materials Science & Engineering A, 2013, 573:67-74.

[9]Bai J J, Li W, Liang Y L, et al. High temperature compressive deformation behavior of TC4 titanium alloy[J]. Heat Treatment of Metals, 2017, 42(5):121-126.

[10]田辉, 黄海青, 陈国清,等. 强旋工艺参数对TC4钛合金筒形件旋压成形的影响[J]. 航天制造技术, 2009,(5):14-17.

Tian H, Huang H Q, Chen G Q, et al. Effects of power spinning processing parameters on cylinders of TC4 alloy [J]. Aerospace Manufacturing Technology, 2009,(5):14-17.

[11]Wang B H, Cheng L, Li D C. Study on very high cycle fatigue properties of forged TC4 titanium alloy treated by laser shock peening under three-point bending[J]. International Journal of Fatigue, 2022, 156: 106668.

[12]Liu Y D, Zhou Y S, Shi W T. Experimental research on variable parameter forming process for forming specimen of TC4 titanium alloy by selective laser melting[J]. Materials, 2022, 15(18):6408-6408.

[13]Lyu N, Liu D, Hu Y, et al. Research on the evolution of residual stresses in the manufacturing process of TC4 alloy profile rolled ring[J]. Engineering Failure Analysis, 2022, 137: 106269.

[14]陈胜川,李建锋,朱宝辉,等.径向锻造加工率对TC4钛合金管材组织与性能的影响[J/OL].热加工工艺,2024(13):134-137[2023-11-06].https://doi.org/10.14158/j.cnki.1001-3814.20212970. 

Chen S Q, Li J F, Zhu B H, et al. Effect of radial forging processing rate on microstructure and properties of TC4 titanium alloy tube [J/OL]. Hot Working Technology, 2024(13):134-137[2023-11-06].https://doi.org/10.14158/j.cnki.1001-3814. 20212970.

[15]何宇鑫, 马玉娥. 高温下TC4合金的黏塑性本构模型研究[J]. 西北工业大学学报, 2023, 41(1): 65-72.

He Y X, Ma Y E. The viscoplastic constitutive model of TC4 alloy under high temperature [J]. Journal of Northwestern Polytechnical University, 2023, 41(1): 65-72.

[16]王双礼, 张起, 乔恩利, 等. 退火温度对TC4钛合金显微组织和力学性能的影响[J]. 热处理, 2023, 38(1):33-36.

Wang S L, Zhang Q, Qiao E L, et al. Effects of annealing temperature on microstructure and mechanical properties of TC4 titanium alloy[J]. Heat Treatment, 2023, 38(1):33-36.

[17]王情情, 刘战强, 程延海,等. 基于多尺度晶粒细化演变的TC4加工表层硬度预测[J]. 华南理工大学学报:自然科学版, 2023, 51(2):35-46.

Wang Q Q, Liu Z Q, Cheng Y H, et al. Hardness prediction of TC4 machined surface based on the evolution of multi-scale grain refinement [J]. Journal of South China University of Technology: Natural Science Edition, 2023, 51(2):35-46.

[18]李东宽, 郭岩, 杨立新,等. TC4钛合金两相区的热变形行为及微观组织[J]. 铸造技术, 2022,43(2):114-119.

Li D K, Guo Y, Yang L X, et al. Thermal deformation behavior and microstructure of TC4 titanium alloy in two-phase region[J]. Foundry Technology, 2022,43(2):114-119.

[19]李洪波, 王琳, 田锋,等. TC4钛合金薄壁筒形件反挤压成形及微观组织演化[J]. 塑性工程学报, 2021, 28(10):19-26.

Li H B, Wang L, Tian F, et al. Backward extrusion and microstructure evolution of TC4 titanium alloy thin-walled cylinders [J]. Journal of Plasticity Engineering, 2021, 28(10):19-26.

[20]刘若凡, 于忠奇, 赵亦希,等. 法兰约束条件下铝合金杯形件的旋压成形性能[J]. 上海交通大学学报, 2019, 53(1):105-110.

Liu R F, Yu Z Q, Zhao Y X, et al. Formability of flange constraint spinning for aluminum cup part [J]. Journal of Shanghai Jiaotong University, 2019, 53(1):105-110.

 
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9