网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
铝合金自动锻造生产线低温环境下脱模剂喷涂失效原因分析及改进措施
英文标题:Analysis on failure causes and improvement measures for release agent spraying in aluminum alloy automatic forging production line under low temperature environment
作者:李思奇 袁红霞 白鹭 邵长斌 梁培新 陈钰金 高丙坤 石一磬 
单位:中国机械总院集团北京机电研究所有限公司 
关键词:铝合金 油基脱模剂 黏度 喷涂流量 黏温特性 
分类号:TG306
出版年,卷(期):页码:2023,48(11):29-34
摘要:

为解决铝合金自动锻造生产线低温环境下脱模剂喷涂量过小甚至无法喷涂的问题,对喷涂失效原因进行了分析。介绍了铝合金自动锻造生产线喷涂系统的结构原理,构建了脱模剂的流体数学模型,分析了喷涂系统的各项参数对喷涂流量的影响。实验测量了不同温度下铝合金锻造专用HYKOGEEN AL 2931 MBA型号脱模剂的运动黏度,建立了黏温方程。计算得到了所研究的自动锻造生产线工艺条件下的脱模剂温度与喷涂流量的关系,揭示了喷涂失效的根本原因,为温度过低导致脱模剂运动黏度增大导致的。提出了应将脱模剂的温度控制在20 ℃以上,并针对生产线进行改进的措施,取得了良好的效果。

In order to solve the problem that the amount of release agent spraying was too small or even impossible to spray under the low temperature environment for the aluminum alloy automatic forging production line, the causes for spraying failure were analyzed. Then, the structure principle of spray system for the aluminum alloy automatic forging production line was introduced, and the fluid mathematical model of release agent was established to analyze the influences of various parameters for the spray system on the spray flow rate. Furthermore, the kinematic viscosity of HYKOGEEN AL 2931 MBA release agent for aluminum alloy forging at different temperatures was measured by the experiment, and the viscosity-temperature equation was established. Finally, the relationship between release agent temperature and spray flow rate under the studied process conditions of the automatic forging production line was calculated, and it was revealed that the root cause of spraying failure was the increase in the kinematic viscosity of release agent caused by too low temperature. The measures to control the temperature of release agent to be above 20 ℃ and to improve the production line are put forward which achieve good results.

基金项目:
作者简介:
作者简介:李思奇(1987-),男,硕士,工程师,E-mail:sikylee@163.com;通信作者:石一磬(1982-),男,学士,研究员,E-mail:shiyiqing1005@163.com
参考文献:

[1]高丙坤. 汽车用铝合金控制臂热成形工艺与性能研究[D]. 北京:中国机械科学研究总院集团有限公司,2020.


Gao B K. Hot Deformation Process and Performance of Aluminum Alloy Control Arm for Automobile [D]. Beijing: China Academy of Machinery Science and Technology Group, 2020.

[2]闫军芳,严小娜.铝合金接触网零件锻造自动化工艺关键点分析[J].电气化铁道,2019,30(S1):153-156.

Yan J F, Yan X N. Analysis of key points of automatic process for forging of aluminum alloy fittings of OCS [J]. Electric Railway, 2019,30 (S1): 153-156.

[3]刘丽英.铝合金锻件楔横轧机脱模剂喷涂系统的研究与开发[D].北京:中国机械科学研究总院集团有限公司,2017.

Liu L Y. The Study and Development of the Release Agent Spraying System on Cross Wedge Rolling for Aluminum Alloy Forging [D]. Beijing: China Academy of Machinery Science and Technology Group, 2017.

[4]姚宏亮,刘庆生,陈宪明,等. 一种锻造模具自动喷雾润滑系统[P]. 中国:CN202110508132.5,2021-07-16.

Yao H L, Liu Q S, Chen X M, et al. An automatic spray lubrication system for forging dies [P]. China: CN202110508132.5, 2021-07-16.

[5]Li Z H, Wu Y X, Cai C R, et al. Mixing and atomization characteristics in an internal-mixing twin-fluid atomizer [J]. Fuel, 2012, 97(6):306-314.

[6]阮少军,费逸伟,马军,等.某型号航空润滑油金属催化高温氧化黏温规律的分析[J].石油化工,2018,47(7):702-707.

Ruan S J, Fei Y W, Ma J, et al. Analysis on the law of viscosity and temperature of a certain aviation lubricant under high temperature oxidation catalyzed by metal [J]. Petrochemical Technology, 2018,47 (7): 702-707.

[7]王天齐,王亚宁,张斌,等.考虑温度和燃油稀释的柴油机润滑油黏度模型研究[J].车用发动机,2023,(3):28-34.

Wang T Q, Wang Y N, Zhang B, et al. Viscosity model of diesel engine lubricating oil based on temperature and fuel dilution [J]. Vehicle Engine, 2023,(3): 28-34.

[8]王燕霜,曹佳伟,李航,等.滚/滑接触下一种航天润滑油4129摩擦特性及黏温特性研究[J].兵工学报,2014,35(9):1515-1520.

Wang Y S, Cao J W, Li H, et al. Study of frictional and viscosity-temperature characteristics of a space lubricanting oil No.4129 in rolling/sliding contact [J]. Acta Armamentarii, 2014,35 (9): 1515-1520.

[9]刘俊明,王文中,赵自强.基于弹流润滑模型的润滑油黏度确定方法[J].润滑与密封,2018,43(7):7-12,30.

Liu J M, Wang W Z, Zhao Z Q. Method for determining lubricant viscosity based on elastohydrodynamic lubrication theory[J]. Lubrication Engineering,2018,43(7):7-12,30.

[10]金愿,邹冰妍,朱绚华.油类与硅油型黏度标准液的量值差异[J].计量科学与技术,2021,65(9):26-30.

Jin Y, Zou B Y, Zhu X H. The value difference between viscosity oil standard and viscosity silicone standard[J]. Metrology Science and Technology, 2021,65 (9): 26-30.

[11]程传亮,孙波.Zahn黏度杯测定液体黏度规范的比较[J].民用飞机设计与研究,2018,129(2):17-20.

Cheng C L, Sun B. Comparison of Zahn viscosity cups specifications for determination of liquid viscosity[J]. Civil Aircraft Design & Research, 2018,129 (2): 17-20.

[12]吴望一.流体力学 [M]. 2版.北京:北京大学出版社,2021.

Wu W Y. Fluid Mechanics [M]. 2nd Edition. Beijing:Peking University Press, 2021.

[13]王厉强,贾碧霞,陈杰,等.裂缝性油藏广义Vogel方程的建立及压敏效应分析[J].油气地质与采收率,2009,16(4):106-108,117.

Wang L Q, Jia B X, Chen J, et al. Establishment of universal vogel equation of fractured reservoir and analysis of pressure sensitivity [J]. Petroleum Geology and Recovery Efficiency, 2009,16 (4): 106-108,117.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9