网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
7A09铝合金高温摩擦模型及微观机理分析
英文标题:High-temperature friction model and microscopic mechanism analysis on 7A09 aluminum alloy
作者:韩传德1 夏建生1 2 赵军2 窦沙沙1 朱少华1 刘镕滔1 
单位:1.盐城工学院 2.燕山大学 
关键词:7A09铝合金 热冲压 微观形貌 变摩擦因数模型 库伦摩擦模型 
分类号:TG146.21
出版年,卷(期):页码:2023,48(9):197-203
摘要:

 采用CFTI型摩擦试验机,研究了润滑条件下不同的载荷、摩擦速度和温度对7A09铝合金摩擦因数的影响,并采用SEM分析微观状态下不同摩擦因素的作用机理。通过分析建立了基于不同载荷、摩擦速度和温度的变摩擦因数模型,并通过试验验证了模型的准确性。利用ABAQUS的子程序开发接口Fric和高级计算机语言Fortran对摩擦模型进行导入和有限元模拟,通过对比库伦摩擦模型的仿真结果和冲压试验的结果进行验证。结果表明:摩擦因数随着载荷的增加、摩擦速度的增加、温度的增加而减小;基于不同载荷、摩擦速度和温度的变摩擦因数模型的数据的拟合程度较好;变摩擦因数模型的仿真结果更接近于冲压试验的结果,铝板的减薄处在侧壁,验证了摩擦模型的有效性。

 The influences of different loads, friction speeds and temperatures on the friction coefficient of 7A09 aluminum alloy under lubrication condition were studied by friction testing machine CFT-I, and the action mechanism of different friction factors in microscopic state was analyzed by SEM. Then, a variable friction coefficient model based on different loads, friction speeds and temperatures was established through analysis, and the accuracy of the model was verified by tests. Furthermore, the friction model was imported and simulated in finite element by using ABAQUS subroutine development interface Fric and advanced computer language Fortran, and it was verified by comparing the simulation result of Coulomb friction model with the result of stamping test. The results show that the friction coefficient decreases with the increasing of load, friction speed and temperature, the data fitting degree of the variable friction coefficient model based on different loads, friction speeds and temperatures is better, the simulation result of the variable friction coefficient model is closer to the result of stamping test, and the thinning of aluminum plate occurs on the side wall, which verifies the validity of the friction model.

基金项目:
作者简介:
作者简介:韩传德(1998-),男,硕士研究生 E-mail:1597805431@qq.com 通信作者:夏建生(1980-),男,博士,教授 E-mail:Xiajiansheng@163.com
参考文献:

 [1]王强. 铝合金车身覆盖件冲压成形回弹仿真方法研究[J]. 农业装备与车辆工程, 2012,50(4):50-53.


Wang Q. Research on springback simulation method for stamping forming of aluminum alloy body panels [J]. Agricultural Equipment and Vehicle Engineering, 2012,50(4): 50-53.

[2]Ghiotti A, Simonetto E, Bruschi S. Influence of process parameters on tribological behaviour of AA7075 in hot stamping[J]. Wear, 2019, 426-427: 348-356.

[3]鲜小红,张定路,陈英,等.基于Dynaform的新能源地库车顶盖冲压成形工艺有限元分析[J].锻压技术,2022,47(12):44-55.

Xian X H, Zhang D L, Chen Y, et al. Finite element analysis of stamping forming process for new energy basement car roof based on Dynaform[J]. Forging & Stamping Technology, 2022,47(12):44-55.

[4]李晓军,门向南,毕四龙,等.航空变曲率内蒙皮零件精确成形参数优化[J].锻压技术,2022,47(11):116-122.

Li X J, Men X N, Bi S L, et al. Optimization of accurate forming parameters for aerospace variable curvature inner skin parts[J]. Forging & Stamping Technology, 2022,47(11):116-122.

[5]Ramezani M, Mohd Ripin Z, Ahmad R. Modelling of kinetic friction in Vbending of ultrahighstrength steel sheets[J]. The International Journal of Advanced Manufacturing Technology, 2010, 46(1-4): 101-110.

[6]岳峰丽,张鑫,陈大勇,等.大型柴油发动机油底壳预成形工艺设计及优化[J].锻压技术,2022,47(9):66-74.

Yue F L, Zhang X, Chen D Y, et al. Design and optimization of preforming process for large diesel engine oil pan [J]. Forging & Stamping Technology, 2022,47(9):66-74.

[7]胡志力, 芦俊杰, 华林. 铝合金热冲压技术研究进展[J]. 锻压技术, 2022,47(2):1-11.

Hu Z L, Lu J J, Hua L. Research progress of aluminum alloy hot stamping technology [J]. Forging & Stamping Technology, 2022,47 (2): 1-11.

[8]张江斌, 何克准, 李承波, 等. 7A09铝合金热精轧板热处理工艺研究[J]. 轻合金加工技术, 2018,46(2):27-31.

Zhang J B, He K Z, Li C B, et al. Research on the heat treatment process of 7A09 aluminum alloy hot finish rolling plate [J]. Light Alloy Processing Technology, 2018,46(2): 27-31.

[9]罗恒, 王优强, 张平. 双液淬火下7A09铝合金的干滑动摩擦磨损性能[J]. 材料导报, 2020,34(24):24109-24113.

Luo H, Wang Y Q, Zhang P. Dry sliding friction and wear properties of 7A09 aluminum alloy under double liquid quenching [J]. Material Guide, 2020,34 (24): 24109-24113.

[10]Garabedian N T. A Direct Experimental Link Between Atomicscale and Macroscale Friction[D]. Ann Arbor: University of Delaware, 2019.

[11]Flegler F, Neuhuser S, Groche P. Influence of sheet metal texture on the adhesive wear and friction behaviour of EN AW5083 aluminum under dry and starved lubrication[J]. Tribology International, 2020,141:105956.

[12]房玉鑫, 王优强, 张平, 等. 不同热处理下2024铝合金摩擦磨损行为和机理[J]. 有色金属工程, 2022,12(4):1-6.

Fang Y X, Wang Y Q, Zhang P, et al. Friction and wear behavior and mechanism of 2024 aluminum alloy under different heat treatments [J]. Nonferrous Metal Engineering, 2022,12(4): 1-6.

[13]Jin B, Chen G, Zhao J, et al. Coupling effect of boundary tribofilm and hydrodynamic film[J]. Cell Reports Physical Science, 2022,3(3):100778.

[14]Grueebler R, Hora P. Temperature dependent friction modeling for sheet metal forming[J]. International Journal of Material Forming, 2009,2(S1):251-254.

[15]孙少华, 张剑阳, 董升朝, 等. 基于ABAQUS的铜钢复合板弯片冲压模拟与模具设计[J]. 热加工工艺, 2021,50(17):87-90.

Sun S H, Zhang J Y, Dong S C, et al. Bending and stamping simulation and die design of coppersteel composite plate based on ABAQUS [J]. Hot Working Technology, 2021,50(17): 87-90.

[16]孙占坤,李涛.中厚板U形冲压成形有限元模拟分析及回弹预测[J].锻压技术,2022,47(5):81-88.

Sun Z K, Li T. Finite element simulation analysis and springback prediction of Ushaped stamping forming of medium and thick plates[J]. Forging & Stamping Technology, 2022, 47(5):81-88.

[17]Klocke F, Trauth D, Shirobokov A, et al. FEanalysis and in situ visualization of pressure, sliprate, and temperaturedependent coefficients of friction for advanced sheet metal forming: Development of a novel coupled user subroutine for shell and continuum discretization [J]. The International Journal of Advanced Manufacturing Technology, 2015,81(1-4):397-410.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9