网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
Aermet100钢高温保温过程奥氏体晶粒演化的原位实验研究
英文标题:In-situ experimental investigation on austenite grain evolution in Aermet100 steel during high temperature holding process
作者:蒋乔1 赵明杰2 张健1 苏阳2 李昌民2 班宜杰2 赵俊飞2 黄亮2 孙朝远3 李蓬川3 李建军2 
单位:1. 大冶特殊钢有限公司2. 华中科技大学 材料科学与工程学院 材料成形与模具技术全国重点实验室 3. 中国第二重型机械集团德阳万航模锻有限责任公司 
关键词:超高强度钢 原位实验 加热速度 晶粒演化 晶粒长大模型 
分类号:TG142.33
出版年,卷(期):页码:2023,48(8):261-267
摘要:

 材料在加热保温过程中的微观组织演化会影响后续的变形过程。为了实现材料热变形过程中微观组织的有效调控,采用高温激光共聚焦设备原位研究了Aermet100钢在加热保温过程中奥氏体晶粒的演化规律。结果表明:随着加热速度的减小、保温温度和保温时间的增加,奥氏体晶粒尺寸增加。相比于加热速度和保温时间,保温温度对奥氏体晶粒尺寸的影响更显著。1000 ℃ 为Aermet100钢奥氏体晶粒长大的临界温度,当保温温度低于1000 ℃时,奥氏体晶粒尺寸较小;当保温温度高于1000 ℃时,奥氏体晶粒尺寸显著增加。基于统计的晶粒尺寸,提出了两种耦合加热速度、保温温度以及保温时间影响奥氏体晶粒长大的模型,两种模型的预测值均与实验值吻合很好,表明建立的两种晶粒长大模型是可靠的。

 The microstructure evolution of materials during the heating and holding process will affect the subsequent deformation process. Therefore, in order to realize the effective control of microstructure during the hot deformation process of material, the austenite grain evolution law of Aermet100 steel during the heating and holding process was studied in-situ by high temperature laser confocal equipment. The results show that the austenite grain size increases with the decreasing of heating rate and the increasing of holding temperature and the holding time. Compared with the heating rate and holding time, the holding temperature has a more significant effect on the austenite grain size. 1000 ℃ is the critical temperature for the austenite grain growth of Aermet100 steel. When the holding temperature is lower than 1000 ℃, the austenite grain size is smaller, and when the holding temperature is higher than 1000 ℃, the austenite grain size increases significantly. Based on the statistical grain size, two austenite grain growth models coupled with the effects of heating rate, holding temperature and holding time were proposed. The predicted values of the two models are in good agreement with the experimental values, which indicates that the two established grain growth models are reliable. 

基金项目:
湖北省重点研发计划(2022BAA024)
作者简介:
作者简介:蒋乔(1971-),男,学士,高级工程师,E-mail:369876197@qq.com;通信作者:黄亮(1981-),男,博士,教授,E-mail:huangliang@hust.edu.cn
参考文献:

[1]赵明杰, 邓磊, 孙朝远, 等. 300M高强钢大型构件全流程锻造变形机理及工艺研究进展 [J]. 科学通报, 2022, 67 (11): 1036-1053.


Zhao M J, Deng L, Sun C Y, et al. Advances on the deformation mechanism and forging technology of 300M high-strength steel heavy components in the whole forging process [J]. Chinese Science Bulletin, 2022, 67 (11): 1036-1053.

[2]赵明杰, 黄亮, 李昌民, 等. 300M钢的热变形行为及热锻成形工艺研究现状 [J]. 精密成形工程, 2020, 12 (6): 16-27.

Zhao M J, Huang L, Li C M, et al. Research status of the hot deformation behaviors and hot forging process of 300M steel [J]. Journal of Netshape Forming Engineering, 2020, 12 (6): 16-27.

[3]赵明杰, 黄亮, 李建军, 等. 300M钢热扭转变形条件下的变形行为研究 [J]. 塑性工程学报, 2020, 27 (11): 159-166.

Zhao M J, Huang L, Li J J, et al. Deformation behaviors of 300M steel under hot torsion [J]. Journal of Plasticity Engineering, 2020, 27 (11): 159-166.

[4]Chamanfar A, Chentouf S M, Jahazi M, et al. Austenite grain growth and hot deformation behavior in a medium carbon low alloy steel [J]. Journal of Materials Research and Technology, 2020, 9 (6): 12102-12114.

[5]Zhao M J, Huang L, Li C M, et al. Investigation and modeling of austenite grain evolution for a typical high-strength low-alloy steel during soaking and deformation process [J]. Acta Metallurgica Sinica:English Letters, 2022, 35 (6): 996-1010.

[6]Zhao F, Hu H, Liu X H, et al. Effect of billet microstructure and deformation on austenite grain growth in forging heating of a medium-carbon microalloyed steel [J]. Journal of Alloys and Compounds, 2021, 869: 159326.

[7]Chen R C, Zheng Z Z, Li J J, et al. In situ investigation of grain evolution of 300M steel in isothermal holding process [J]. Materials, 2018, 11 (10): 1862.

[8]Zhang Y, Li X H, Liu Y C, et al. Study of the kinetics of austenite grain growth by dynamic Ti-rich and Nb-rich carbonitride dissolution in HSLA steel: In-situ observation and modeling [J]. Materials Characterization, 2020, 169: 110612.

[9]Su F Y, Liu W L, Wen Z. Three-dimensional cellular automaton simulation of austenite grain growth of Fe-1C-1.5Cr alloy steel [J]. Journal of Materials Research and Technology, 2020, 9 (1): 180-187.

[10]Quan G Z, Zhang P, Ma Y Y, et al. Characterization of grain growth behaviors by BP-ANN and Sellars models for nickle-base superalloy and their comparisons [J]. Transactions of Nonferrous Metals Society of China, 2020, 30 (9): 2435-2448.

[11]张一帆, 朱晓飞, 周舸, 等. A100钢的热变形行为及加工图 [J]. 精密成形工程, 2022, 14 (2): 88-94.

Zhang Y F, Zhu X F, Zhou K, et al. Hot deformation behavior and processing map of A100 steel [J]. Journal of Netshape Forming Engineering, 2022, 14 (2): 88-94.

[12]钱芳, 王忠堂. AerMet100超高强度钢的热变形行为及本构模型研究 [J]. 热加工工艺, 2018, 47 (14): 88-90, 96.

Qian F, Wang Z T. Study on thermal deformation behavior and constitutive model of AerMet100 ultra high strength steel [J]. Hot Working Technology, 2018, 47 (14): 88-90, 96.

[13]孙朝远, 谢静, 苗小浦, 等. Aermet100超高强度钢热变形中的动态再结晶行为研究 [J]. 热加工工艺, 2017, 46 (20): 112-115.

Sun C Y, Xie J, Miao X P, et al. Research on dynamic recrystallization behavior of Aermet100 ultra-high strength steel during hot deformation [J]. Hot Working Technology, 2017, 46 (20): 112-115.

[14]Zhao Z L, Min X N, Xu W X, et al. Dynamic recrystallization models of AerMet100 ultrahigh strength steel during thermo-mechanical processing [J]. Rare Metal Materials and Engineering, 2020, 49 (10): 3285-3293.

[15]乔慧娟, 李付国, 冀国良, 等. Aermet100钢高温变形行为及热加工图研究 [J]. 稀有金属材料与工程, 2014, 43 (4): 926-931.

Qiao H J, Li F G, Ji G L, et al. Deformation behavior at elevated temperature and processing map of Aermet100 steel [J]. Rear Metal Materials and Engineering, 2014, 43 (4): 926-931.

[16]王鑫, 董洪波, 邹忠波, 等. AerMet100钢的热变形显微组织演变及动态再结晶行为 [J]. 特种铸造及有色合金, 2016, 36 (2): 121-125.

Wang X, Dong H B, Zou Z B, et al. Microstructure evolution and dynamic recrystallization behavior of hot deformed Aermet100 steel [J]. Special Casting & Nonferrous Alloys, 2016, 36 (2): 121-125.

[17]Zhao M J, Huang L, Zeng R, et al. In-situ observations and modeling of metadynamic recrystallization in 300M steel [J]. Materials Characterization, 2020, 159: 109997.

[18]Zhao M J, Huang L, Zeng R, et al. In-situ observations and modeling of static recrystallization in 300M steel [J]. Materials Science and Engineering: A, 2019, 765: 138300.

[19]Liu F, Xu G, Zhang Y L, et al. In situ observations of austenite grain growth in Fe-C-Mn-Si super bainitic steel [J]. International Journal of Minerals, Metallurgy and Materials, 2013, 20 (11): 1060-1066.

[20]Li M Y, Yao D, Yang L, et al. Kinetic analysis of austenite transformation for B1500HS high-strength steel during continuous heating [J]. International Journal of Minerals, Metallurgy and Materials, 2020, 27 (11): 1508-1516.

[21]Banerjee K, Militzer M, Perez M, et al. Nonisothermal austenite grain growth kinetics in a microalloyed X80 linepipe steel [J]. Metallurgical and Materials Transactions A, 2010, 41 (12): 3161-3172.

[22]Rudnizki J, Zeislmair B, Prahl U, et al. Prediction of abnormal grain growth during high temperature treatment [J]. Computational Materials Science, 2010, 49 (2): 209-216.

[23]Zhang S S, Li M Q, Liu Y G, et al. The growth behavior of austenite grain in the heating process of 300M steel [J]. Materials Science and Engineering: A, 2011, 528 (15): 4967-4972.

[24]Lee S J, Lee Y K. Prediction of austenite grain growth during austenitization of low alloy steels [J]. Materials & Design, 2008, 29 (9): 1840-1844.

[25]Ruan J J, Ueshima N, Oikawa K. Phase transformations and grain growth behaviors in superalloy 718 [J]. Journal of Alloys and Compounds, 2018, 737: 83-91.

[26]Xu Y W, Tang D, Song Y, et al. Prediction model for the austenite grain growth in a hot rolled dual phase steel [J]. Materials & Design, 2012, 36: 275-278.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9