网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于粘塑性自洽模型6061铝合金厚板轧制过程模拟
英文标题:Simulation on rolling process of 6061 aluminum alloy thick plate based on visco-plastic self-consistent model
作者:蒋小娟1 胡蒙均1 孙涛2 肖欣睿2 彭洁2 董梦瑶1 詹正阳1 
单位:1.重庆工业职业技术学院 机械工程与自动化学院 2.重庆大学 材料科学与工程学院 
关键词:6061铝合金 热轧 粘塑性自洽模型 各向异性 压下率 
分类号:TG335
出版年,卷(期):页码:2023,48(8):125-135
摘要:

 以厚度为60 mm的6061铝合金板材为研究对象,采用Deform仿真分析技术研究了不同压下率轧制变形过程中板材温度、应变、应力场的变化规律,着重分析了对板材心部、1/4处、表层的影响,并结合粘塑性自洽(VPSC)有限元法研究了板材不同位置处的织构演变规律,为铝合金轧制过程中的变形行为和各向异性研究提供了新的方法。结果表明:多道次轧制过程中,心部与表层区域的最大温差受轧件压下率影响不大,最大温差为10 ℃,板材表层和1/4处的累积应变均始终大于心部,轧件与轧辊接触导致表层承受较大的应力,轧件局部表现出明显的应力分布不均匀的状态;轧件表层、1/4处以及心部均形成了β取向线上的3种典型织构,即Copper织构{112}<11-1>、Brass织构{011}<21-1>和S织构{123}<63-4>,随着轧制压下率的不断增大,织构的体积分数越来越大,织构强度也逐渐增大,其中,S织构的体积分数和强度上升趋势明显,进一步说明S织构相比其他两种织构对应变变化过程更加敏感。

 For the 6061 aluminum alloy plate with the thickness of 60 mm, the change laws of temperature, strain and stress fields of the plate during the rolling deformation process at different reduction rates were studied by Deform simulation analysis technology, and the influences on the core, 1/4 position and the surface of the plate were emphatically analyzed. Then, the texture evolution laws of different positions of the plate were studied by visco-plastic self-consistent(VPSC) finite element method, which provided a new method for the study of deformation behavior and anisotropy in the aluminum alloy rolling process. The results show that during the multi-pass rolling process, the maximum temperature difference between the core and surface area is not prominently affected by the reduction rate of the rolled part, and the maximum temperature difference is 10 ℃. The accumulative strains at the surface and 1/4 position are always greater than that at the core, the contact between rolled parts and roller causes a large stress on the surface, and it shows obvious uneven stress distribution in the local areas of rolled parts. Three typical textures on β orientation line,that are Copper texture {112}<11-1>, Brass texture {011}<21-1> and S texture {123}<63-4> are formed at the surface, 1/4 position and core of rolled part.  With the continuous increasing of rolling reduction rate, the volume fraction of texture increases and the texture strength also increases. Among them, the volume fraction and the strength of S texture show an obvious increasing trend, which further indicates that the strength of S texture is more sensitive to the strain change process than the other two textures.

基金项目:
重庆市教育委员会科学技术研究计划青年项目资助项目(KJQN202203209,KJQN202203216);重庆市自然科学基金面上项目 (cstc2021jcyj-msxmX1112)
作者简介:
作者简介:蒋小娟(1987-),女,博士,讲师,E-mail:jiangxj@cqipc.edu.cn
参考文献:

[1]Stemper L, Tunes M A, Tosone R, et al. On the potential of aluminum crossover alloys[J]. Progress in Materials Science, 2022, 124: 100873.


[2]Li S S, Zhao Q, Liu Z Y, et al. A review of texture evolution mechanisms during deformation by rolling in aluminum alloys[J]. Journal of Materials Engineering and Performance, 2018, 27(7): 3350-3373.

[3]Zheng J, Pang Q, Hu Z L, et al. Recent progress on regulating strategies for the strengthening and toughening of high-strength aluminum alloys[J]. Materials, 2022, 15(13):4725. 

[4]张小璐. 纳米结构6061铝合金的组织调控与性能优化[D].重庆:重庆大学, 2021.

Zhang X L. Tailoring the Microstructure and Mechanical Properties of Nanostructured 6061 Aluminum Alloy[D].Chongqing:Chongqing University,2021.

[5]王瑞红, 孙瑞霞. 汽车用6061铝合金板轧制变形组织及力学性能分析[J]. 热加工工艺, 2020, 49(11): 104-106,110.

Wang R H,Sun R X. Analysis of rolling deformation microstructure and mechanical properties of 6061 aluminum alloy plate for automobile[J]. Hot Working Technology, 2020, 49(11): 104-106,110. 

[6]路林, 刘玥扬, 矫全宇. 汽车用6系铝合金及其焊接方法综述[J]. 焊接技术, 2020, 49(6): 1-4.

Lu L, Liu Y Y, Jiao Q Y. Overview of 6 series aluminum alloys for automobiles and its welding methods[J]. Welding Technology, 2020, 49(6): 1-4.

[7]王艺橦. 电-热-力耦合场下Al-Mg-Si合金的组织演变及强韧化机理研究[D].长春:吉林大学, 2020.

Wang Y T. Research on Microstructure Evolution and Strengthening-toughening Mechanism of Al-Mg-Si Alloy under Electric-thermal-strain Coupling Field[D]. Changchun:Jilin University, 2020.

[8]Ding F J, Jia X D, Hong T J, et al. Flow stress prediction model of 6061 aluminum alloy sheet based on GA-BP and PSO-BP neural networks[J]. Rare Metal Materials and Engineering, 2020, 49(6): 1840-1853.

[9]Bembalge O B, Panigrahi S K. Hot deformation behavior and processing map development of cryorolled AA6063 alloy under compression and tension[J]. International Journal of Mechanical Sciences, 2021, 191:106100.

[10]Ma Y, Du Z X, Cui X M, et al. Effect of cold rolling process on microstructure and mechanical properties of high strength beta titanium alloy thin sheets[J]. Progress in Natural Science:Materials International, 2018, 28(6): 711-717.

[11]Valdes-Tabernero M A, Sancho-Cadenas R, Sabirov I, et al. Effect of SPD processing on mechanical behavior and dynamic strain aging of an Al-Mg alloy in various deformation modes and wide strain rate range[J]. Materials Science and Engineering:A, 2017, 696: 348-359.

[12]Jeong M, Lee J, Han J H. Effects of hot asymmetric rolling on microstructure and formability of aluminum alloys[J]. Korean Journal of Materials Research, 2019, 29(10): 647-655.

[13]Amegadzie M Y, Bishop D P. Effect of asymmetric rolling on the microstructure and mechanical properties of wrought 6061 aluminum[J]. Materials Today Communications, 2020, 25:101283.

[14]Ko Y G, Hamad K. Annealing behavior of 6061 Al alloy subjected to differential speed rolling deformation[J]. Metals, 2017, 7(11):494. 

[15]林凌峰, 袁鸽成, 杨濂, 等. 平均道次压下率对异步轧制—固溶6016铝合金板材显微组织的影响[J]. 金属热处理, 2022, 47(9): 36-41.

Lin L F, Yuan G C, Yang L, et al. Effect of average pass reduction on microstructure of asynchronous rolled-solution treated 6016 aluminum alloy sheet[J]. Heat Treatment of Metals, 2022, 47(9): 36-41. 

[16]Jiang X J, Bai Y, Zhang L, et al. Termination of local strain concentration led to better tensile ductility in multilayered 2N/4N Al sheet[J]. Materials Science & Engineering:A, 2020, 782:139240.

[17]梅瑞斌, 史现利, 包立, 等. AZ91D镁合金热塑性行为及热辊轧制过程再结晶组织模拟[J]. 中国有色金属学报, 2022, 32(5): 1289-1301.

Mei R B, Shi X L, Bao L, et al. Plastic deformation of AZ91D magnesium alloy and recrystallization structure simulation in heated roll rolling[J]. The Chinese Journal of Nonferrous Metals, 2022, 32(5): 1289-1301.

[18]Zhang X, Wang X X, Zhang D K. Investigation into constitutive equation and hot compression deformation behavior of 6061 Al alloy[J]. Tehnicˇki Vjesnik, 2019, 26(5): 1376-1382.

[19]丛福官. 7B50铝合金厚板组织、性能及各向异性研究[D].沈阳:东北大学, 2018.

Cong F G. Research on Microstructure, Properties and Anisotropy of 7B50 Aluminium Alloy Sheet[D].Shenyang: Northeastern University, 2018.

[20]廖斌. 7055铝合金厚板的变形行为及热处理特性的基础研究[D].重庆:重庆大学, 2019.

Liao B. Basic Research on Deformation Behavior and Heat Treatment Characteristics of 7055 Aluminum Alloy Thick Plate[D]. Chongqing: Chongqing University, 2019.

[21]李海, 徐海峰, 王芝秀. 预处理对冷轧时效6156铝合金组织与性能的影响[J]. 稀有金属, 2022, 46(1): 17-26.

Li H, Xu H F, Wang Z X. Microstructures and tensile properties of cold-rolled and re-aged 6156 Al alloy by pre-treating[J]. Chinese Journal of Rare Metals,2022,46(1):17-26.

[22]Lebensohn R A, Tomé C N. A self-consistent anisotropic approach for the simulation of plastic-deformation and texture development of polycrystals:Application to zirconium alloys[J]. Acta Metallurgica et Materialia, 1993, 41(9): 2611-2624.

[23]Zhou C, Lin J B, He W H, et al. Tensile deformation simulation of extruded ZK60 alloy by VPSC model[J]. Rare Metal Materials and Engineering, 2022, 51(7): 2429-2435. 

[24]蒋小娟, 李坤宏, 袁程, 等. 大型非等厚7075铝合金自由锻件残余应力消减研究[J]. 兵器材料科学与工程, 2022, 45(5): 108-115.

Jiang X J, Li K H, Yuan C, et al. Residual stress reduction of large non-equal thickness free forging part of 7075 aluminum alloy[J]. Ordnance Material Science and Engineering, 2022, 45(5): 108-115.

[25]Tanaka H,Nagai Y,Oguri Y, et al. Mechanical properties of 5083 aluminum alloy sheets produced by isothermal rolling[J]. Materials Transactions, 2007, 48(8):2008-2013.

[26]昌江郁, 陈送义, 陈康华, 等. 7056铝合金厚板轧制变形不均匀性的实验研究与数值模拟[J]. 中南大学学报:自然科学版, 2018, 49(8): 1914-1921.

Chang J Y, Chen S Y, Chen K H, et al. Numerical simulation and experimental investigation of rolling deformation inhomogeneity of 7056 aluminum alloy thick plate[J]. Journal of Central South University:Science and Technology, 2018, 49(8): 1914-1921.

[27]Mandal S, Gockel B T, Balachandran S, et al. Simulation of plastic deformation in Ti-5553 alloy using a self-consistent viscoplastic model[J]. International Journal of Plasticity, 2017, 94: 57-73.

[28]刘欢, 邓偲瀛, 宋鸿武, 等. 基于晶体塑性理论的Zr-4合金板冷轧变形织构演变[J]. 稀有金属材料与工程, 2021, 50(10): 3591-3599.

Liu H, Deng S Y, Song H W, et al. Texture evolution of Zr-4 alloy sheet during cold rolling based on crystal plasticity theory[J]. Rare Metal Materials and Engineering, 2021, 50(10): 3591-3599.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9