网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
用于比例变量泵供液系统的预压阀组设计与仿真分析
英文标题:Design and simulation analysis on pre-charge valve group for hydraulic supply system of proportional variable pump
作者:黄周轩1 2 3 刘赟清1 2 3  张晓丽4 王拴庆1 2 3 王雪1 2 3 钱宝旭1 2 3 
单位:1.兰州兰石重工有限公司  2.甘肃省金属塑性成形装备智能控制重点实验室 3.甘肃省大型快锻液压设备技术创新中心 4.兰州兰石集团有限公司能源装备研究院 
关键词:快锻压机 比例变量泵 预压阀组 供液压力 阻尼孔直径 控制腔直径 
分类号:TH137
出版年,卷(期):页码:2023,48(7):162-169
摘要:

 设计一种用于快速锻造液压机组供液系统的预压阀组,当比例变量泵的摆角瞬时变化时,预压阀组根据设定压力及时调整阀芯开度,使供液压力保持在比例变量泵吸油的许用范围之内。为了验证预压阀组设计中阻尼孔直径、控制腔直径、弹簧刚度及预压力等关键参数对阀特性以及快速锻造液压机组液压供液系统供液压力的影响,利用AMESim液压仿真技术建立预压阀组及快锻压机比例变量泵供液系统的仿真模型,并根据样本与快锻压机测试参数对仿真模型的准确性进行验证。通过不同参数的仿真对比分析,得到阻尼孔、控制腔直径的选取直接影响着阀组的响应特性与系统的压力稳定性,而弹簧刚度及预压力则无明显影响等结论,并将结论应用到预压阀组的参数设计中。

 A pre-charge valve group for hydraulic supply system of  rapid forging hydraulic unit was designed, and when the swing angle of proportional variable pump changed instantaneously, the pre-charge valve group adjusted the opening of valve core in time according to the set pressure, so that the hydraulic supply  pressure remained within the allowable range of oil suction for the proportional variable pump. Then, in order to verify the influence of key parameters such as damping hole diameter, control chamber diameter, spring stiffness and pre-pressure in the design of pre-charge valve group on the valve characteristics and the hydraulic supply pressure of hydraulic supply system for rapid forging hydraulic unit, the simulation model of the pre-charge valve group and the hydraulic supply system with proportional variable pump for rapid forging press was established by the AMESim hydraulic simulation technology, and the accuracy of the simulation model was verified according to the samples and the test parameters of rapid forging press. Through the simulation and comparative analysis of different parameters, it is concluded that the diameters of damping hole and control chamber directly affect the response characteristics of valve group and the pressure stability of system, while the spring stiffness and the pre-pressure have no obvious impact, and the conclusion is applied to the parameter design of the pre-charge valve group.

基金项目:
兰州市科技计划项目(2022-2-1)
作者简介:
作者简介:黄周轩(1988-),男,学士,工程师 E-mail:choution@126.com
参考文献:

[1]姚保森. 我国锻造液压机的现状及发展[J]. 锻压装备与制造技术, 2005, 40(3):28-30.


Yao B S. States and development of chinese hydraulic forging press[J]. China Metalforming Equipment & Manufacturing Technology,2005, 40(3):28-30.

[2]李南,赵静,马晓光.大型油压机的多泵组合控制系统优化设计[J].兰州理工大学学报,2010,36(6):48-51.

Li N,Zhao J,Ma X G. Optimization design of multi pump combination control system for largescale liquid press[J].Journal of Lanzhou University of Technology,2010,36(6):48-51.

[3]李壮云.液压元件与系统[M].北京:机械工业出版社,2011.

Li Z Y. Hydraulic Component and System[M]. Beijing: China Machine Press, 2011.

[4]梁全,谢基晨,聂利伟.液压系统AMESim计算机仿真进阶教程[M].北京:机械工业出版社,2014.

Liang Q, Xie J C, Nie L W. Advanced Tutorial of Hydraulic System AMESim Computer Simulation[M]. Beijing: China Machine Press,2014.

[5]付永领,祁晓野.LMS Imagine.Lab AMESim系统建模和仿真参考手册[M].北京:北京航空航天大学出版社,2011.Fu Y L, Qi X Y. Reference Manual of LMS Imagine.Lab AMESim System Modeling and Simulation [M]. Beijing: Beihang University Press, 2011.

[6]张伟,李淳潮,李志远,等.基于AMESim的电/气比例压力阀仿真与试验[J].液压与气动,2020,(3):65-70.

Zhang W, Li C C, Li Z Y, et al. Simulation and test for electropneumatic proportional pressure valve based on amesim[J].Chinese Hydraulics & Pneumatics,2020,(3):65-70.

[7]周杰,常映辉,冀鹏飞.基于AMESim的定差减压阀的建模和仿真[J].煤矿机械,2021,42(3):180-182.

Zhou J, Chang Y H, Ji P F. Modeling and simulation of constant pressure reducing valve based on AMESim[J]. Coal Mine Machinery,2021,42(3):180-182.

[8]张锐尧,李军,柳贡慧,等.基于AMESim的节流阀自动控制系统[J].石油机械,2021,49(4):35-43.

Zhang R Y, Li J, Liu G H, et al. Automatic throttle control system based on AMESim[J]. China Petroleum Machinery,2021,49(4):35-43.

[9]王阳阳.基于AMESim与Fluent联合仿真的安全阀启溢闭研究[J].液压与气动,2019,(11):92-98.

Wang Y Y. Research on safety valve′s opening, overflowing and closing via cosimulation between AMESim and Fluent[J]. Chinese Hydraulics & Pneumatics,2019,(11):92-98.

[10]陈雨洋,李靖祥,杨昌群,等.基于AMESim的轴流先导式水击卸压阀动态特性分析[J].液压与气动,2020,(11):8-14.

Chen Y Y, Li J X, Yang C Q, et al. Analysis of dynamic characteristics of axial pilotoperated surge relief valve based on AMESim[J]. Chinese Hydraulics & Pneumatics,2020,(11):8-14.

[11]潘多斐,张建鹏,刘赟清,等.快锻压机锻造频次仿真与试验研究[J].锻压装备与制造技术,2022,57(4):28-32.

Pan D F, Zhang J P, Liu Y Q, et al. Simulation and experimental study on forging frequency of fast forging press[J]. China Metalforming Equipment & Manufacturing Technology, 2022,57(4):28-32.

[12]魏海涛,张晓丽,魏海锋,等.快锻压机主泵供液系统仿真分析[J].液压与气动,2022,46(2):184-188.

Wei H T, Zhang X L, Wei H F, et al. Simulation analysis of liquid supply system for main pump of fast forging press[J]. Chinese Hydraulics & Pneumatics,2022,46(2):184-188.

 
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9