网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
厚度比与退火温度对铜/铝冷轧板冲压性能与界面结合强度的影响
英文标题:Influences of thickness ratio and annealing temperature on stamping properties and interfacial bonding strength for copper/aluminum cold rolled plate
作者:陈才1 孔诚1 王名川1 赵金库2 杜忠华3 杨森4 
单位:1. 南京理工大学 中法工程师学院 2. 黑龙江北方工具有限公司 3. 南京理工大学 机械工程学院 4. 南京理工大学 材料科学与工程学院 
关键词:Cu/Al复合板材 冲杯试验 杯突试验 力学各向异性行为 界面结合强度 
分类号:TB331
出版年,卷(期):页码:2023,48(7):82-92
摘要:

 为满足弹药智能制造和轻量化需求,采用冷轧法制备了厚度比分别为1∶1、1∶5和1∶9的Cu/Al复合板,研究厚度比对复合板冲压性能与界面结合强度的影响。通过单轴拉伸试验获得了材料的基本力学性能和各向异性参数,以类拉深工艺的冲杯试验和杯突试验定量表征Cu/Al复合板的冲压性能。进一步研究了退火温度对复合板力学各向异性行为和界面结合强度的影响,以调控复合板的冲压性能。结果表明,3种Cu/Al复合板冲压成形件的质量良好,铜层厚度比越高,复合板的冲压性能越好;经过500 ℃/120 min退火后,板材的力学各向异性参数达到最低的0.027,冲压成形性能明显改善;随着退火温度的升高,扩散层的厚度逐渐变大,界面结合强度先升高后降低。研究结果可为制备具有优良冲压性能的Cu/Al复合板提供理论指导。

 In order to meet the needs of intelligent manufacturing and lightweight ammunition, Cu/Al composite plate with the thickness ratios of 1∶1, 1∶5 and 1∶9 were prepared by cold rolling method, and the influences of thickness ratio on stamping properties and interfacial bonding strength of composite plates were studied. Then, the basic mechanical properties and anisotropy parameters of materials were obtained by uniaxial tensile tests, and the stamping properties of Cu/Al composite plate were quantitatively characterized by the deep drawing cups testing and Erichsen cupping test. Furthermore, the influences of annealing temperature on the mechanical anisotropy behavior and interfacial bonding strength of composite plates were studied to regulate the stamping properties of composite plate. The results show that the quality of stamping parts for three kinds of Cu/Al composite plates is good, and the higher the thickness ratio of copper layer is, the better the stamping properties of composite plate are. After annealing at 500 ℃/120 min, the mechanical anisotropy parameter of plate reaches the lowest value of 0.027, and the stamping properties is significantly improved. As the annealing temperature increases, the thickness of diffusion layer gradually increases, and the interfacial bonding strength first increases and then decreases. Thus, the research results con provide the theoretical guidance for the preparation of Cu/Al composite plates with excellent stamping properties.

基金项目:
国家自然科学基金资助项目(51901101,11802131)
作者简介:
作者简介:陈才(1985-),男,博士,讲师 E-mail:cai.chen@njust.edu.cn
参考文献:

 [1]Hajizadeh K, Tajally M, Emadoddin E, et al. Study of texture, anisotropy and formability of cartridge brass sheets[J]. Alloys and Compounds A, 2014, 588: 690-696.


[2]肖善超. 弹壳多模一次连续变薄拉深工艺研究[D]. 秦皇岛:燕山大学, 2012.

Xiao S C. Research on Multimodeoneoffironing Process for Cartridge Case[D]. Qinhuangdao: Yanshan University, 2012.

[3]Findik F. Recent developments in explosive welding [J]. Materials & Design, 2011, 32(3):1081-1093.

[4]Durgutlu A, Gulenc B, Findik F. Examination of copper/stainless steel joints formed by explosive welding[J]. Materials & Design, 2005, 26(6):497-507.

[5]Athar M, Tolaminejad B. Weldability window and the effect of interface morphology on the properties of Al/Cu/Al laminated composites fabricated by explosive welding[J]. Materials & Design, 2015, 86(5):516-525.

[6]Liu T, Wang Q D, Sui Y D, et al. An investigation into interface formation and mechanical properties of aluminumcopper bimetal by squeeze casting[J]. Materials & Design, 2016, 89:1137-1146.

[7]Li X B, Zu G Y, Ding M M, et al. Interfacial microstructure and mechanical properties of Cu/Al clad sheet fabricated by asymmetrical roll bonding and annealing[J]. Materials Science and Engineering: A, 2011, 529(1):485-491.

[8]Sheng L Y, Yang F, Xi T F, et al. Influence of heat treatment on interface of Cu/Al bimetal composite fabricated by cold rolling [J]. Composites Part B, 2011, 42(6):1468-1473.

[9]郝平菊,王振华,刘元铭. 退火温度对铜/铝/铜复合板结合性能的影响[J]. 热加工工艺, 2018, 47(24):159-162.

Hao P J, Wang Z H, Liu Y M. Effect of annealing temperature on bonding properties of Cu/Al/Cu clad sheet[J]. Hot Working Technology, 2018, 47(24):159-162.

[10]Yuan S J, Cheng W J, Liu W, et al. A novel deep drawing process for aluminum alloy sheets at cryogenic temperatures[J]. Journal of Materials Processing Technology, 2020, 284:116743.

[11]Olaf Engler. Control of texture and earing in aluminium alloy AA-3105 sheet for packaging applications[J]. Materials Science and Engineering: A, 2012, 538:69-80.

[12]康永飞,白朴存,佟乃强,等.3003铝合金冲压变形前后微观组织及其织构演变规律研究[J].内蒙古工业大学学报: 自然科学版, 2018, 37(2):102-108.

Kang Y F, Bai P C, Tong N Q, et al. Study on microstructure and texture evolution of 3003 aluminum alloy before and after stamping deformation[J]. Journal of Inner Mongolia University of Technology: Natural Science Edition, 2018, 37(2): 102-108.

[13]刘哲,王爱琴,谢敬佩,等. 铜铝复合板的拉深变形行为[J]. 材料热处理学报, 2021, 42(6):22-28.

Liu Z, Wang A Q, Xie J P, et al. Drawing deformation behavior of Cu /Al composite plates[J]. Transactions of Materials and Heat Treatment, 2021, 42(6):22-28.

[14]Zhang X H, Tang B, Zhang X L, et al. Microstructure and texture of commercially pure titanium in cold deep drawing[J]. Transactions of Nonferrous Metals Society of China, 2012, (3):496-502.

[15]Lu R H, Liu Y T, Yan M, et al. Theoretical, experimental and numerical studies on the deep drawing behavior of Ti/Al composite sheets with different thickness ratios fabricated by roll bonding[J]. Journal of Materials Processing Technology, 2021, 297:117246.

[16]GB/T 5125—2008,有色金属冲杯试验方法[S].

GB/T 5125—2008, Method for deep drawing cups testing of nonferrous metals[S].

[17]GB/T 4156—2020,金属材料薄板和薄带埃里克森杯突试验[S].

GB/T 4156—2020, Metallic matarials—Sheet and strip—Erichsen cupping test[S].

[18]Lee K S, Su E L, Kim J S, et al. Interface microstructure and deformation behavior of an AlCu dissimilar metal plate[J]. Journal of Korean Institute of Metals & Materials, 2013, 51(7):535-545.

[19]Kim I K, Hong S I. Rollbonded trilayered Mg/Al/stainless steel clad composites and their deformation and fracture behaviour[J]. Metallurgical and Materials Transactions A, 2013, 44(8):3890-3900.

[20]刘帅洋,王爱琴,田捍卫, 等. 不同应变速率下铜/铝层状复合材料的拉伸变形行为[J]. 材料热处理学报, 2018, 39(10): 8-14.

Liu S Y, Wang A Q, Tian H W, et al. Tensile deformation behavior of Cu /Al layered composites under different strain rates[J]. Transactions of Materials and Heat Treatment, 2018, 39(10):8-14.

[21]杨莹,马靖楠,何岩, 等. 纯铜热处理工艺参数对微拉深成形的影响[J]. 热加工工艺, 2018, 47(16):238-241.

Yang Y, Ma J N, He Y, et al. Effect of heat treatment process parameters of pure copper on microdrawing forming[J]. Hot Working Technology, 2018, 47(16):238-241.

 
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9