网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
超高强钢辊压成形中预冲孔对回弹影响的实验与数值预测
英文标题:Experimental and numerical prediction on influence of pre-punched hole on springback in roll forming for ultra-high strength steel
作者:刘晓立1 2  张建邦1 黄素霞1 李河宗1 闫宾3 闻海强1 翟永利4 
单位:1.河北工程大学 机械与装备工程学院 河北省智能工业装备技术重点实验室 2.金马工业集团股份有限公司 3.安阳工学院 机械工程学院 4.邯郸市正大制管有限公司 
关键词:超高强钢 辊压成形 预冲孔 回弹 变弹性模量 
分类号:TG335.4
出版年,卷(期):页码:2023,48(7):71-81
摘要:

为准确预测超高强钢预缺口产品在辊压成形中的回弹现象,通过模拟和实验相结合的方法,讨论了预中孔对辊压成形中超高强度钢板回弹的影响。建立了预开槽汽车门槛件的有限元模型,并通过连续辊压实验验证了其精度。采用超高强钢MS1300的拉伸实验确定的可变弹性模量的数学模型构建了有限元模型,发现使用可变弹性模量可以将孔区域的回弹预测精度提高15%。设计了几种成形方案,以研究不同特征对孔区回弹的影响。结果表明:预伸孔的存在降低了回弹,且在汽车门槛的不同位置,效果不同。随着机架数量、板带厚度和孔径的增加,机架间距和孔间距的减小,预冲孔所在位置的回弹减小。通过研究希望能减少辊压实际生产中孔对回弹的影响,提高预切断面的成形精度。

In order to accurately predict the springback phenomenon of ultra-high strength steel (UHSS) pre-notched products in roll forming, the influence of pre-punched hole on the springback of ultra-high strength steel sheet in roll forming was discussed by simulation and experiments. Then, the finite element model of pre-slotted automobile threshold was established, and its accuracy was verified by continuous roll forming experiments. Furthermore, the mathematical model of variable elastic modulus determined by the tensile test of ultra-high strength steel MS1300 was applied to establish the finite element model, and it was found that using the variable elastic modulus could improve the springback prediction accuracy in the hole area by 15%. Finally, several forming schemes were designed to study the influences of different features on the springback in the hole area. The results indicate that the presence of pre-punched hole reduces the springback, and the effect varies at different locations on the automobile threshold. With the increasing of the number of racks, the thickness of strip and the diameter of holes, and the decreasing of the spacing between racks and the spacing between holes, the springback at the position of pre-punched holes decreases. Thus, it is hoped that the impact of hole on the springback in the actual production of roll forming is reduced, and the forming accuracy of pre-cut section is improved.

基金项目:
河北省自然科学基金资助项目(E2013402064);河北省教育厅青年基金(QN2021209);山东省科技型中小企业创新能力提升工程项目(2022TSGC1231);安阳市科技计划资助项目(2022C01GX015)
作者简介:
作者简介:刘晓立(1986-),男,博士,研究生导师 E-mail:liuxiaoli01206332@163.com 通信作者:张建邦(1999-),男,硕士研究生 E-mail:3414801480@qq.com
参考文献:
[1]Halmos G T. Halmos GT Roll Forming Handbook[M].1st.New York: Crc Press,2006.

[2]Chryssolouris G.Manufacturing Systemstheory and Practice[M]. 2nd. New York: Springer,2005.

 

[3]Taylor T. Novel cold-rolled martensitic ultra-high-strength steels for roll forming technologies[J].Mater. Sci. Technol.,2016,32(16):1730-1741.

 

[4]Groche P, Beiter P, Henkelmann M.Prediction and inline compensation of springback in roll forming of high and ultrahigh strength steels[J]. Production Engineering: Research and Development,2008,2(4):401-407.

 

[5]Abvabi A, Rolfe B, Hodgson P D, et al. The influence of residual stress on a roll forming process[J]. International Journal of Mechanical Sciences,2015,101-102:124-136.

 

[6]Bui Q V, Ponthot J P. Numerical simulation of cold rollforming processes[J]. Journal of Materials Processing Tech., 2008,202(1):275-282.

 

[7]Paralikas J, Salonitis K, Chryssolouris G. Investigation of the effects of main rollforming process parameters on quality for a Vsection profile from AHSS[J]. The International Journal of Advanced Manufacturing Technology,2008,44(3-4):223-237.

 

[8]Lim H, Lee M G, Sung J H, et al. Timedependent springback of advanced high strength steels[J]. International Journal of Plasticity,2012,29:42-59.

 

[9]Wiebenga J H, Weiss M, Rolfe B, et al. Product defect compensation by robust optimization of a cold roll forming process[J]. Journal of Materials Processing Tech., 2013,213(6):978-986.

 

[10]Su C J, Yang L Y, Lou S M, et al.Research on roll forming process based on fiveboundary condition forming angle distribution function[J]. The International Journal of Advanced Manufacturing Technology,2019,102(9-12):3767-3779.

 

[11]Almeida C O L, Lima L H L, dos Santos Pereira M. Springback comparison between DP600 and DP800 steel grades[J]. Materials Research Express,2020,7(1): 016598.

 

[12]Zeng G, Li S H, Yu Z Q, et al. Optimization design of roll profiles for cold roll forming based on response surface method[J]. Materials & Design,2009,30 (6):1930-1938.

 

[13]Liu X L, Cao J G, Huang S X, et al. Experimental and numerical prediction and comprehensive compensation of springback in cold roll forming of UHSS[J]. The International Journal of Advanced Manufacturing Technology,2020,111(3):657-671.

 

[14]Badr O M, Rolfe B, Hodgson P, et al. Forming of high strength titanium strip at room temperature[J]. Materials & Design,2015, 66:618-626.

 

[15]Chen W, Jiang J, Li D, et al. Flower pattern and roll positioning design for the cage roll forming process of ERW pipes[J]. Journal of Materials Processing Tech.,2019,264:295-312.

 

[16]Chongthairungruang B, Uthaisangsuk V, Suranuntchai S, et al. Experimental and numerical investigation of springback effect for advanced high strength dual phase steel[J]. Materials & Design,2012, 39:318-328.

 

[17]Abeyrathna B, Rolfe B, Weiss M. The effect of process and geometric parameters on longitudinal edge strain and product defects in cold roll forming[J]. The International Journal of Advanced Manufacturing Technology,2017,92(1-4):743-754.

 

[18]Toros S, Polat A, Ozturk F. Formability and springback characterization of TRIP800 advanced high strength steel[J]. Materials & Design,2012,41:298-305.

 

[19]Badr O M, Rolfe B, Zhang P, et al. Applying a new constitutive model to analyse the springback behaviour of titanium in bending and roll forming[J]. International Journal of Mechanical Sciences, 2017, 128-129:389-400.

 

[20]Jung J, Jun S, Lee H S, et al. Anisotropic hardening behaviour and springback of advanced highstrength steels[J]. Metals,2017, 7(11):480-494.

 

[21]Liu X L, Cao J G, Chai X T, et al. Investigation of forming parameters on springback for ultra high strength steel considering Young′s modulus variation in cold roll forming[J]. Journal of Manufacturing Processes,2017, 29:289-297.

 

[22]Park H S, Anh T V.Finite element analysis of roll forming process of aluminum automotive component[A]. International Forum on Strategic Technology[C]. Singapore: IEEE,2010.

 

[23]Mahajan P, Abrass A, Groche P. FE simulation of roll forming of a complex profile with the aid of steady state properties[J]. Steel Research International,2018,89(5):1700350.

 

[24]Sumikawa S, Ishiwatari A, Hiramoto J, et al. Improvement of springback prediction accuracy using material model considering elastoplastic anisotropy and Bauschinger effect[J]. Journal of Materials Processing Tech.,2016,230:1-7.

 

[25]Naofal J, Naeini H M, Mazdak S. Effects of hardening model and variation of elastic modulus on springback prediction in roll forming[J]. Metals,2019, 9(9):1005.

 

[26]Bhattacharyya D, Smith P D. The development of longitudinal strain in cold roll forming and its influence on product straightness[J]. Adv. Technol.Plast.,1984, 1:422-427.

 

[27]Chen Z, Bong H J, Li D, et al. The elasticplastic transition of metals[J]. International Journal of Plasticity,2016, 83:178-201.

 

[28]Paralikas J, Salonitis K, Chryssolouris G. Investigation of the effect of roll forming pass design on main redundant deformations on profiles from AHSS[J]. The International Journal of Advanced Manufacturing Technology,2001,56(5-8):475-491.

 

[29]Sumikawa S, Ishiwatari A, Hiramoto J, et al. Improvement of springback prediction accuracy using material model considering elastoplastic anisotropy and Bauschinger effect[J]. Journal of Materials Processing Tech.,2016,230:1-7.

 

[30]Abvabi A, Mendiguren J, Kupke A, et al. Evolution of elastic modulus in roll forming[J]. International Journal of Material Forming,2017,10(3):463-471.

 

[31]Yoshida F, Uemori T, Fujiwara K. Elasticplastic behavior of steel strips under inplane cyclic tensioncompression at large strain[J]. International Journal of Plasticity, 2002, 18(5-6):633-659.

 

[32]Bui Q V, Ponthot J P.Numerical simulation of cold rollforming processes[J]. Journal of Materials Processing Tech., 2008,202(1-3):275-282.

 

[33]Hellborg S.Finite Element Simulation of Roll Forming[D]. Sweden: Linkping University,2007.

 

[34]Sousa R J A D, Yoon J W, Cardoso R P R, et al. On the use of a reduced enhanced solidshell (RESS) element for strip forming simulations[J]. International Journal of Plasticity, 2007, 23(3):490-515.

 

[35]Xu H J, Liu Y Q, Zhong W. Threedimensional finite element simulation of medium thick plate metal forming and springback[J]. Finite Elements in Analysis & Design,2002,51:49-58.

 

[36]Han Z W, Liu C, Lu W P, et al. Spline finite strip analysis of forming parameters in roll forming a channel section[J]. Journal of Materials Processing Tech.,2005,159(3):383-388.

 

[37]Bidabadi B S, Naeini H M, Tafti R A, et al. Experimental investigation of the ovality of holes on prenotched channel products in the cold roll forming process[J]. Journal of Materials Processing Tech.,2015,225:213-220.

 

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9