网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
连续应变分布Maraging250钢的动态再结晶行为
英文标题:Dynamic recrystallization behavior on continuous strain distribution for Maraging250 steel
作者:韩顺1 尚丽梅1 厉勇1 王建国2 高茜3 王春旭1 
单位:(1.钢铁研究总院有限公司 特殊钢研究院 北京 100081 2.西北工业大学 材料学院 陕西 西安 710072  3.中国航发动力股份有限公司 陕西 西安 710021) 
关键词:Maraging250钢 双锥试样 应变 动态再结晶 微观组织 
分类号:TG311
出版年,卷(期):页码:2023,48(6):231-237
摘要:

 通过设计高通量双锥试样,在单个热压缩试样的不同区域产生梯度应变,研究了1020~1150 ℃变形温度下Maraging250钢的动态再结晶(DRX)行为。采用有限元数值模拟、光学显微镜和电子背散射衍射技术,定量分析了各双锥变形试样垂直截面中心线附近的显微组织,确定了DRX的含量,建立了不同变形温度下Maraging250钢的动力学曲线。结果表明:将双锥试样热压缩后,等效应变沿垂直截面中心线呈连续对称分布,应变从边缘到心部逐渐增大至1.7,内部变形温度基本稳定在972~985 ℃。在热压缩过程中,Maraging250钢发生了连续应变DRX,其动力学曲线表现为典型的“S”形特征,DRX体积分数在变形中期增长速率最高,在变形初期及末期增速缓慢。随着变形温度的升高,DRX形核过程所需的应变有所降低,DRX体积分数最大增长率明显升高,但各变形温度下完全DRX所需的应变量变化较小。

  The dynamic recrystallization (DRX) behavior of Maraging250  steel at temperature of 1020-1150 ℃ was studied by designing high-flux biconical specimen and producing gradient strains in different regions of one single thermal compression specimen. Then, the microstructure near the center line of the vertical section of each biconical deformed specimens was quantitatively analyzed by finite element numerical simulation, optical microscope (OM ) and electron backscatter diffraction (EBSD ) technology, the content of DRX was determined, and the kinetic curves of Maraging250 steel at different deformation temperatures were established. The results show that after thermal compression of the biconical specimen, the equivalent strain is continuously and symmetrically distributed along the center line of the vertical section, the strain gradually increases to 1.7 from the edge to the center, and the internal deformation temperature is basically stable at 972-985 ℃. During the thermal compression process, continuous strain DRX occurs in Maraging250 steel and its kinetic curves show a typical ‘S’ shape feature. DRX volume fraction increases at the highest rate in the middle stage of deformation, and the growth rate is slow in the early and late stages of deformation. With the increasing of deformation temperature, the strain required for the nucleation process of DRX decreases, and the maximum growth rate of DRX volume fraction increases obviously, but the strain required for complete DRX changes slightly at each deformation temperature.

基金项目:
国家重点研发计划资助项目(2022YFB3705204)
作者简介:
韩顺(1987-),男,硕士,高级工程师
参考文献:

 
[1]Cabrera E S P,Guérin J D,Barbera-Sosa J G L, et al. Friction correction of austenite flow stress curves determined under axisymmetric compression conditions
[J]. Experimental Mechanics, 2019, 35: 679-693.



[2]魏明刚, 龚斌, 闵武, 等. 热变形对35CrMo钢淬火马氏体晶体学特征的影响
[J]. 锻压技术, 2022, 47(8): 249-254.

Wei M G, Gong B, Min W, et al. Influence of hot deformation on crystallographic characteristics of quenched martensite for 35CrMo steel
[J]. Forging & Stamping Technology, 2022, 47(8): 249-254.


[3]Decker R F, Floreen S. Maraging Steels the First 30 Years
[M]. Maraging Steels: Recent Developments and Applications,1988.


[4]姜越, 尹钟大, 朱景川, 等. 马氏体时效不锈钢的发展现状
[J]. 特殊钢, 2003, 24(3): 1-5.

Jiang Y, Yin Z D, Zhu J C, et al. Development status of maraging stainless steel
[J]. Special Steel, 2003, 24(3): 1-5.


[5]戴彦璋,韩顺,厉勇,等.C250钢执为形奥氏体静态再结晶行为
[J].锻压技术,2022,47(11):231-238.

Dai Y Z, Han S, Li Y, et al. Static recrystallization behavior on thermal deformation austenite for C250 steel
[J]. Forging & Stamping Technology, 2022,47(11):231-238.


[6]黄烁, 王磊, 张北江,等.GH4706合金的动态再结晶与晶粒控制
[J]. 材料研究学报, 2014, 28(5): 362-370.

Huang S, Wang L, Zhang B J, et al. Dynamic recrystallization behavior and grain size control of GH4706 superalloy
[J]. Chinese Journal of Materials Research, 2014, 28(5):362-370.


[7]Jue W, Zhai S C. Dynamic recrystallization kinetics of 690 alloy during hot compression of double-cone samples
[J]. Journal of Materials Engineering and Performance, 2017, 26(3):1433-1443.


[8]Wusatowska-Sarnek A M, Miura H, Sakai T. Nucleation and microtexture development under dynamic recrystallization of copper
[J]. Materials Science & Engineering A, 2002, 323(1):177-186.


[9]陈舒恬, 王珏, 胡定祥. GH738合金双锥试样热压缩行为
[J]. 材料热处理学报, 2016, 37(12):80-85.

Chen S T, Wang J, Hu D X. Hot compression behaviors of double cone samples of GH738 alloy
[J]. Transactions of Materials and Heat Treatment, 2016, 37(12):80-85.


[10]Beladi H, Cizek P, Hodgson P D. Dynamic recrystallization of austenite in Ni-30 pct Fe model alloy: Microstructure and texture evolution
[J].Metallurgical and Materials Transactions A, 2009, 40: 1175-1189.


[11]Hossein B, Pavel C, Hodgson P D. On the characteristics of substructure development through dynamic recrystallization
[J]. Acta Materialia, 2010, 58(9):3531-3541.


[12]Jorge-Badiola D, Iza-Mendia A, Gutiérrez I. Study by EBSD of the development of the substructure in a hot deformed 304 stainless steel
[J]. Materials Science & Engineering A, 2004, 394(1):445-454.


[13]Srinivasa N, Prasad Y V R K. Hot working characteristics of nimonic 75, 80A and 90 superalloys: A comparison using processing maps
[J]. Journal of Materials Processing Technology, 1995, 51(1):171-192.


[14]Zhang C, Zhang L W, Shen W F, et al. Characterization of hot deformation behavior of hastelloy C-276 using constitutive equation and processing map
[J]. Journal of Materials Engineering and Performance, 2015, 24(1):149-157.


[15]Bi Z N, Zhang M C, Dong J X, et al. A new prediction model of steady state stress based on the influence of the chemical composition for nickel-base superalloys
[J].Materials Science and Engineering A, 2010, 27: 4373-4382.


[16]Wang J, Dong J, Zhang M, et al. Hot working characteristics of nickel-base superalloy 740H during compression
[J]. Materials Science & Engineering A, 2013, 566: 61-70.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9