网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
耦合氢含量的置氢Ti65高温钛合金本构方程材料与成形性能
英文标题:Constitutive equation on hydrogenated Ti65 high-temperature titanium alloy coupled with hydrogen content
作者:田壵1 余俊2 张浩1 王新云1 邓磊1 金俊松1 龚攀1 
单位:(1.华中科技大学 材料成形与模具技术国家重点实验室 湖北 武汉 430074 2. 武汉新威奇科技有限公司 湖北 鄂州 436070) 
关键词:置氢处理 Ti65高温钛合金 高温压缩 热变形行为 本构方程 
分类号:TG316
出版年,卷(期):页码:2023,48(6):204-213
摘要:

 为了研究置氢处理对Ti65高温钛合金的热变形行为的影响,利用Gleeble-3500热模拟实验机,对不同氢含量的试样分别在α+β两相区和β单相区进行了高温压缩实验。结果表明:置氢与未置氢试样在两相区和单相区具有相似的流变特征,两相区和单相区变形时的主要软化机制分别为α相动态再结晶和β相动态回复,置氢促进了Ti65高温钛合金的动态再结晶软化。0.13 wt.%氢可将Ti65高温钛合金在910 ℃、1 s-1变形时的变形抗力降低约104 MPa,显著改善了Ti65高温钛合金的热加工性能。基于实验结果,采用多项式拟合方法构建Arrhenius本构方程,确定各参数与氢含量之间的关系,分别在α+β两相区和β单相区建立了耦合氢含量的Ti65高温钛合金本构方程,方程的平均相对绝对误差分别为9.41%和6.68%,表明所建立的本构方程能较为准确地预测含氢Ti65高温钛合金的流动应力,为制定和优化局部置氢钛合金零件的成形工艺提供理论依据。

  To study the influence of hydrogenation on the hot deformation behavior of Ti65 high-temperature titanium alloy, the high temperature compression tests of the samples with different hydrogen contents in the α+β two-phase region and β single-phase region were carried out by hot simulation experiment machine Gleeble-3500, respectively. The results show that the hydrogenated and unhydrogenated samples have similar rheological characteristics in the two-phase region and single-phase region, and the main softening mechanism in the two-phase region is dynamic recrystallization (DRX) of α phase and in the single-phase region is dynamic recovery (DRV) of β phase. Hydrogenation promotes the dynamic recrystallization softening of Ti65 high-temperature titanium alloy, and the deformation resistance of Ti65 high-temperature titanium alloy at 910 ℃ and 1 s-1 reduces near 104 MPa by adding 0.13 wt.% hydrogen, which significantly improves the hot workability of Ti65 high-temperature titanium alloy. Based on the experimental results, the Arrhenius constitutive equation is constructed by polynomial fitting method, and the relationships between various parameters and hydrogen content are determined. The constitutive equations of Ti65 high-temperature titanium alloy coupled with hydrogen content in the α+β two-phase region and β single-phase region are established by the polynomial fitting, and the average relative absolute errors of these equations are 9.41% and 6.68%, respectively. Thus, the established constitutive equations can accurately predict the rheological stress of hydrogenated Ti65 high-temperature titanium alloy, and provide a theoretical basis for formulating and optimizing the forming process of locally hydrogenated titanium alloy parts.

基金项目:
国家自然科学基金资助项目(52090043);中央高校基本科研业务费专项资金资助项目(2021GCRC003)
作者简介:
田壵(1996-),男,硕士研究生
参考文献:

 
[1]Weiss I, Semiatin S L. Thermomechanical processing of alpha titanium alloys-An overview
[J]. Materials Science and Engineering: A,1999, 263(2): 243-256.



[2]Lütjering G, Williams J C. Titanium
[M]. Heidelberg: Springer Berlin, 2007.


[3]Sun F, Li J S, Kou H C, et al. Nano-precipitation and tensile properties of Ti60 alloy after exposure at 550 ℃ and 650 ℃
[J]. Materials Science and Engineering: A, 2015, 626: 247-253.


[4]Evans R W, Hull R J, Wilshire B. The effects of alpha-case formation on the creep fracture properties of the high-temperature titanium alloy IMI834
[J]. Journal of Materials Processing Technology,1996, 56(1): 492-501.


[5]Peng W W, Zeng W D, Wang Q J, et al. Characterization of high-temperature deformation behavior of as-cast Ti60 titanium alloy using processing map
[J]. Materials Science and Engineering: A, 2013, 571: 116-122.


[6]Williams J C. Alternate materials choices-some challenges to the increased use of Ti alloys
[J]. Materials Science and Engineering: A, 1999, 263(2): 107-111.


[7]Wang Q J, Liu J R, Yang R. High temperature titanium alloys: Status and perspective
[J]. Journal of Aeronautical Materials, 2014, 34(4): 1-26.


[8]Zhao Z B, Wang Q J, Liu J R, et al. Effect of heat treatment on the crystallographic orientation evolution in a near-α titanium alloy Ti60
[J]. Acta Materialia, 2017, 131: 305-314.


[9]蔡建明, 李娟, 田丰, 等. 先进航空发动机用高温钛合金双性能整体叶盘的制造
[J]. 航空制造技术,2019, 62(19): 34-40.

Cai J M, Li J, Tian F, et al. Manufacturing of high temperature titanium alloy dual-property blisk used for advanced aero-engine
[J]. Aeronautical Manufacturing Technology, 2019, 62(19): 34-40.


[10]李文彬. 置氢Ti65高温钛合金的变形行为与微观组织演变研究
[D]. 武汉:华中科技大学, 2021.

Li W B. Research on Deformation Behavior and Microstructure Evolution of Hydrogenated Ti65 Alloy
[D]. Wuhan:Huazhong University of Science and Technology, 2021.


[11]邓磊, 李文彬, 王新云, 等. 一种基于局部置氢制造钛合金双性能涡轮盘的方法及产品
[P]. 中国: CN201811502569.2,2020.

Deng L, Li W B, Wang X Y, et al. A method and product for manufacturing a titanium alloy dual-performance turbine disk based on local hydrogenation
[P]. China: CN201811502569.2,2020.


[12]纪博宇, 李细锋, 李剑飞. 置氢Ti-55钛合金变形本构方程及高温增塑机理研究
[J]. 塑性工程学报,2018, 25(1): 180-186.

Ji B Y, Li X F, Li J F. Constitutive equation and high temperature plasticizing mechanism of hydrogenated Ti-55 titanium alloy
[J]. Journal of Plasticity Engineering,2018, 25(1): 180-186.


[13]宗影影. 钛合金置氢增塑机理及其高温变形规律研究
[D]. 哈尔滨:哈尔滨工业大学, 2007.Zong Y Y. Study on the Hydrogen Enhanced Plasticity Mechanism and Deformation Behaviors of Titanium Alloys at High Temperatures
[D]. Harbin:Harbin Institute of Technology, 2007.


[14]黄树晖. 置氢钛合金与纯锆高温软化行为及其对锻造变形的影响
[D]. 哈尔滨:哈尔滨工业大学, 2013.

Huang S H. High Temperature Softening Behavior of Hydrogenated Titanium Alloys and Pure Zirconium and its Effect on Forging Deformation
[D]. Harbin:Harbin Institute of Technology, 2013.


[15]赵敬伟. 热氢处理对钛合金组织演变及高温变形行为的影响
[D]. 沈阳: 东北大学, 2009.

Zhao J W. Influence of Thermohydrogen Treatment on Microstructural Evolution and High Temperature Deformation Behavior of Titanium Alloys
[D]. Shenyang:Northeastern University, 2009.


[16]唐敏. 置氢ZrTiAlV合金的高温变形行为及显微组织演变
[D]. 重庆:重庆大学, 2020.

Tang M. High Temperature Deformation Behavior and Microstructure Evolution of Hydrogenated ZrTiAlV Alloy
[D]. Chongqing:Chongqing University, 2020.


[17]Wang K, Li M Q. Characterization of discontinuous yielding phenomenon in isothermal compression of TC8 titanium alloy
[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(6): 1583-1588.


[18]Ghasemi E, Zarei-Hanzaki A, Farabi E, et al. Flow softening and dynamic recrystallization behavior of BT9 titanium alloy: A study using process map development
[J]. Journal of Alloys and Compounds, 2017, 695: 1706-1718.


[19]Zong Y Y, Huang S H, Feng Y J, et al. Hydrogen induced softening mechanism in near alpha titanium alloy
[J]. Journal of Alloys and Compounds, 2012, 541: 60-64.


[20]Jia W J, Zeng W D, Zhou Y G, et al. High-temperature deformation behavior of Ti60 titanium alloy
[J]. Materials Science and Engineering: A, 2011, 528(12): 4068-4074.


[21]Sellars C M, McTegart W J. On the mechanism of hot deformation
[J]. Acta Metallurgica, 1966, 14(9): 1136-1138.


[22]Sellars C M, McTegart W J. Hot workability
[J]. International Metallurgical Reviews,1972, 17(158): 1-22.


[23]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel
[J]. Journal of Applied Physics, 1944, 15(1): 22-32.


[24]龙帅. 合金热变形行为快速求解方法与应用研究
[D]. 重庆:重庆大学, 2020.

Long S. Research on the Rapid Solution and Analysis Method for Hot Deformation Behavior of Alloys and its Application
[D]. Chongqing:Chongqing University, 2020.


[25]Briottet L, Jonas J J, Montheillet F. A mechanical interpretation of the activation energy of high temperature deformation in two phase materials
[J]. Acta Materialia, 1996, 44(4): 1665-1672.


[26]Li B, Pan Q L, Yin Z M. Microstructural evolution and constitutive relationship of Al-Zn-Mg alloy containing small amount of Sc and Zr during hot deformation based on Arrhenius-type and artificial neural network models
[J]. Journal of Alloys and Compounds, 2014, 584: 406-416.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9