网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
Y形管内高压成形过程数值模拟与实验研究
英文标题:Numerical simulation and experimental study on hydroforming process for Y-shaped tube
作者:冯莹莹 孙晓倩 贾越 骆宗安 吴庆林 
单位:东北大学 
关键词:内高压成形 Y形管 内压力 补料比 背向冲头 
分类号:TG394
出版年,卷(期):页码:2023,48(5):236-244
摘要:

 为解决Y形管在内高压成形过程中极易出现的起皱、胀破等缺陷,采用与主管相平行的背向冲头,结合DYNAFORM模拟软件以探究背向冲头端面角度对成形效果的影响。并对使用平行冲头时,内压力、补料比等主要影响因素对Y形管的成形性能、壁厚分布及应力应变分布的影响开展研究,分析不同影响因素的相关影响机理,以寻求制备最佳性能的Y形管的工艺参数范围。结果表明:整形应力为55 MPa、补料比为1.3∶1时,Y形管的成形效果最佳,且采用平行冲头可明显提高支管的有效成形高度,减少支管顶端胀破的机率,使Y形管壁厚分布更为均匀,成形效果更为优异。

 In order to solve the defects such as wrinkle and bursting etc. that were prone to occur during the hydroforming process of Y-shaped tube, a back punch parallel to main tube was designed, and the influence of the end angle of back punch on the forming effect was explored by simulation software DYNAFORM. Furthermore, when parallel punch was used, the influences of internal pressure, feed ratio and other main influence factors on the formability, wall thickness distribution and stress-strain distribution of Y-shaped tube were studied, and the relevant influence mechanism of different influence factors was analyzed to seek the range of process parameters for preparing Y-shaped tube with the best performance. The results show that when the shaping stress is 55 MPa and the feed ratio is 1.3∶1, the forming effect of Y-shaped tube is the best, and the parallel punch can obviously increase the effective forming height of branch tube, reduce the probability of branch tip bursting, and make the wall thickness distribution of Y-shaped tube more uniform and the forming effect better.

基金项目:
国家自然科学基金资助项目(52105322)
作者简介:
作者简介:冯莹莹(1982-),女,博士,副研究员,E-mail:fengyy@ral.neu.edu.cn
参考文献:

[1]韩聪, 苑世剑. 汽车轻量化结构件内高压成形技术与装备最新进展[J]. 汽车工艺师, 2017, 21(4): 24-26.


Han C, Yuan S J. The latest development of internal high pressure forming technology and equipment for automotive lightweight structural parts[J]. Auto Manufacturing Engineer, 2017, 21(4): 24-26.

[2]朱书建. T型三通管内高压成形的仿真与优化研究[D]. 柳州:广西科技大学, 2018.

Zhu S J. Simulation and Optimization of High Pressure Forming in T-shape Tube [D]. Liuzhou:Guangxi University of Science and Technology,2018.

[3]Zhang Z C, Kang Y J, Furushima T, et al. Deformation behaviour of metal micro tube during hydroforming process [J]. Procedia Manufacturing, 2020, 50: 328-331.

[4]Bell C, Corney J R, Zuelli N, et al. A state of the art review of hydroforming technology: Its applications,research areas, history, and future in manufacturing [J]. International Journal of MaterialForming, 2020, 13(5): 789-828.

[5]续迎萍, 崔岸, 马浩通, 等. 基于模糊控制的Y形管内高压成形加载路径优化[J]. 机床与液压, 2022, 50(10): 19-25.

Xu Y P, Cui A, Ma H T, et al. Optimization of loading path for internal high pressure forming in Y-shaped tube based on fuzzy control[J]. Machine Tool & Hydraulics, 2022, 50(10): 19-25.

[6]Zhou B J, Xu Y C. Wrinkle behavior of hydroforming of aluminum alloy double-layer sheets[J]. JOM, 2016, 68(12): 3201-3207.

[7]彭俊阳, 罗德高, 滕步刚, 等. 薄壁Y型三通管内高压成形起皱与开裂分析[J]. 材料科学与工艺, 2017, 25 (4): 11-16.

Peng J Y, Luo D G, Teng B G, et al. Analysis on wrinkling and cracking initiation in hydroforming thin-walled Y-shaped tubes [J]. Materials Science and Technology, 2017, 25(4): 11-16.

[8]张举, 徐雪峰, 肖尧, 等. 基于区域润滑的Y型管内高压成形壁厚分布优化[J]. 塑性工程学报, 2021, 28(9): 73-79.

Zhang J, Xu X F, Xiao Y, et al. Optimization of wall thickness distribution of Y-shaped tube in hydroforming based on area lubrication[J]. Journal of Plasticity Engineering, 2021, 28(9): 73-79.

[9]Jirathearanat S, Hartl C, Altan T. Hydroforming of Y-shapes-product and process design using FEA simulation and experiments[J]. Journal of Materials Processing Technology, 2014,146(1): 124-129.

[10]Liu G, Peng J Y, Wang X S, et al. Effects of preform on thickness distribution of hydroformed Y-shaped tube[J]. Advanced Materials Research, 2011, 189-193: 2796-2800.

[11]Guo X Z, Tao J, Yuan Z, et al. Hydroforming simulation and preparation of low activation martensitic steel Y-shapes[J]. Nuclear Engineering & Design, 2011, 241(8): 2802-2806.

[12]王鑫, 余心宏. Y型三通管内高压成形机理及补料比的影响研究[J]. 材料工程, 2013, (1): 35-39,72. 

Wang X, Yu X H. Hydroforming mechanism of Y-shaped tube and influence of axial feed ratio on forming [J]. Journal of Materials Engineering, 2013, (1): 35-39,72.

[13]GB/T 228.1—2021,金属材料拉伸试验第1部分: 室温试验方法[S]. 

GB/T 228.1—2021, Metallic materials—Tensile testing—Part 1: Method of test at room temperature [S].

[14]徐佳俊, 徐雪峰, 范玉斌, 等. 基于响应面法的Y型管内高压成形加载路径优化[J]. 塑性工程学报, 2022, 29(6): 67-75.

Xu J J, Xu X F, Fan Y B, et al. Loading path optimization for internal high-pressure forming of Y-shaped tube based on response surface method[J]. Journal of Plasticity Engineering, 2022, 29(6): 67-75.

[15]Siano D. Three-dimensional/one-dimensional numerical correlation study of a three-pass perforated tube[J]. Simulation Modelling Practice and Theory, 2011, 19(4): 1143-1153.

[16]肖尧. Y型管内高压成形影响因素研究及壁厚分布优化[D]. 南昌:南昌航空大学, 2019.

Xiao Y. Study on the Influencing Factors of Hydroforming of Y-shaped Tube and Thickness Distribution Optimization [D]. Nanchang:Nanchang Hangkong University, 2019.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9