网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
超高强钢管件热气胀成形特性与A柱样件开发
英文标题:Hot metal gas forming characteristics of ultra-high strength steel tube and development of A-pillar specimens
作者:程超1 2 韩非1 2 石磊1 2 
单位:1.宝山钢铁股份有限公司中央研究院 2.汽车用钢开发与应用技术国家重点实验室(宝钢) 
关键词:B1500HS超高强钢 热气胀成形 轻量化 A柱样件 最大胀形率 
分类号:TG394
出版年,卷(期):页码:2023,48(5):95-102
摘要:

 1.5 GPa超高强钢结合新型成形工艺,可以获得轻量化及性能优异的零部件。以B1500HS超高强钢为对象,研究了其热气胀成形特性,并采用实验手段获得了该超高强钢的热态拉伸性能及最大胀形率,为该材料在零件设计和开发中的应用提供了指导和依据。进一步以典型A柱为对象,完成了冲压件优化为管件的零件设计,并基于B1500HS超高强钢的成形特性,完成了热气胀成形工艺设计、仿真分析和优化,并加工获得了满足强度要求、轻量化效果超过10%的合格A柱样件。研究成果为汽车行业采用1.5 GPa超高强钢热气胀成形零件提供了可行性示范。

 1.5 GPa ultra-high strength steel combined with a new forming process can obtain lightweight and high-performance parts. Therefore, for B1500HS ultra-high strength steel, the characteristics of hot metal gas forming were studied, and the hot tensile properties and maximum bulging rate of this ultra-high strength steel were obtained by experimental means, providing guidance and basis for the application in design and development of part. Furthermore, for a typical A-pillar, the part design for the stamping part optimized as a tube was completed, and based on the forming characteristics of B1500HS ultra-high strength steel, the hot metal gas forming process design, simulation analysis and optimization were completed. Finally, the qualified A-pillar samples that met the strength requirements and had a lightweight effect of more than 10% were processed. Thus, the research results provide a feasible demonstration for the automotive industry to adopt hot metal gas formed parts for 1.5 GPa ultra-high strength steel.

基金项目:
作者简介:
作者简介:程超(1989-),男,硕士,工程师,E-mail:chengchao198@baosteel.com
参考文献:

[1]林荣会,宋晓飞.汽车轻量化研究进展[J].青岛理工大学学报,2018,39(6):98-103.


Lin R H,Song X F. Study process of car lightweight[J]. Journal of Qingdao University of Technology,2018,39(6):98-103.

[2]田萌. 新能源汽车轻量化技术路线和应用策略[J]. 汽车与新动力,2022,(4):17-19.

Tian M. Lightweight technology route and application strategy of new energy vehicle [J]. Automobile and New Powertrain,2022,(4):17-19.

[3]卞利云. 多目标定位在低速防撞系统中的应用[J]. 科技资讯, 2011,(5): 41-42.

Bian L Y. Application of multi target positioning in low speed collision avoidance system[J]. Science & Technology Information, 2011,(5): 41-42.

[4]康永林, 朱国明. 中国汽车发展趋势及汽车用钢面临的机遇与挑战[J]. 钢铁, 2014, 49(12): 1-7.

Kang Y L, Zhu G M. Development trend of China′s automobile industry and the opportunities and challenges of steels for automobiles[J]. Iron & Steel, 2014, 49(12): 1-7.

[5]柳艳杰, 胡焜, 夏春艳, 等. 低速碰撞时汽车前纵梁的数值仿真与优化设计[J]. 哈尔滨商业大学学报:自然科学版, 2008, 24(3): 347-351.

Liu Y J,Hu K,Xia C Y,et al. Computer simulation and optimization designs on front rails of automobile in low speed collision[J]. Journal of Harbin University of Commerce:Natural Sciences Edition, 2008, 24(3): 347-351.

[6]杨孟欣,张亚松,孙鹏博,等. 汽车轻量化的研究与实现途径[J].时代汽车,2019,(8):37-38.

Yang M X,Zhang Y S,Sun P B,et al. Research and implementation approaches for automobile lightweight[J].Auto Time,2019,(8):37-38.

[7]王利,朱晓东,张丕军,等. 汽车轻量化与先进的高强度钢板[J].宝钢技术, 2003,(5): 53-59.

Wang L,Zhu X D,Zhang P J,et al. Lightweighting of automobiles and advanced high strength steel[J].Bao Steel Technology, 2003,(5): 53-59.

[8]肖寿仁, 周永胜, 郑小秋. 先进高强度钢在汽车轻量化中的应用分析[J]. 井冈山大学学报: 自然科学版, 2010, 31(6): 96-100.

Xiao S R,Zhou Y S,Zheng X Q. Analysis on advanced high strength steel in automobile lightweight application[J]. Journal of Jinggangshan University:Natural Science, 2010, 31(6): 96-100.

[9]Hartl C. Research and advances in fundamentals and industrial applications of hydroforming[J]. Journal of Materials Processing Technology, 2005, 167(2-3): 383-392.

[10]苑世剑, 何祝斌, 刘钢, 等. 内高压成形理论与技术的新进展[J]. 中国有色金属学报, 2011, 21(10): 2523-2533.

Yuan S J,He Z B,Liu G,et al. New developments in theory and processes of internal high pressure forming[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(10): 2523-2533.

[11]袁清华, 黄重国, 吴昕. 轻质高强度汽车结构件热态金属气压成形工艺[J]. 新技术新工艺·热加工工艺技术与装备, 2007,(8):52-55.

Yuan Q H,Huang Z G,Wu X. Hot metal gas forming of light-weight high strength vehicle structural components[J]. New Technology & New Process, 2007,(8):52-55.

[12]王辰淏. 薄壁管高气压热成形技术与工艺研究[D]. 沈阳:东北大学,2014.

Wang C H. Research on High Pressure Hot Gas Forming Technology for Thin-wall Tube[D]. Shenyang:Northeastern University,2014.

[13]张东升,李彦云,李超. 车身零部件成形工艺发展趋势研究[J]. 锻造与冲压,2022,(2):20-28.

Zhang D S,Li Y Y,Li C. Development trend of body parts forming process[J]. Forging & Metalforming,2022,(2):20-28.

[14]王贵桥,李建平,孙 涛,等. 超高强钢管气压热成形设备的研究开发[J]. 东北大学学报:自然科学版,2017,38(2):234-239.

Wang G Q,Li J P,Sun T,et al. Development of thermoforming equipment with inner high atmospheric pressure for ultra-strength steel pipe[J]. Journal of Northeastern University:Natural Science,2017,38(2):234-239.

[15]Yuan S J,Liu G,Huang X R,et al. Hydroforming of typical hollow components[J]. Journal of Materials Processing Technology,2004,151(1-3): 203-207.

[16]王刚,孔得红,谢允聪,等. AZ31/AA5083双金属筒形件气压胀形-冷缩结合工艺[J]. 中国有色金属学报,2018,28(4):712-718.

Wang G,Kong D H,Xie Y C,et al. Gas blow forming-cooling contraction bonding process of AZ31/AA5083 bimetallic cylinder[J]. The Chinese Journal of Nonferrous Metals,2018,28(4):712-718.

[17]赵隆卿,庄厚川,曹广祥,等. 热成形技术在车身零件上的应用概述[J].汽车工艺与材料,2021,(12):24-28. 

Zhao L Q,Zhuang H C,Cao G X,et al. Overview of application of hot forming technology on auto body parts[J].Automobile Technology & Material,2021,(12):24-28. 

[18]刘浩,谭宁,金鑫焱. 变形量对铝硅镀层热冲压用钢组织和性能的影响[J].金属热处理,2019,44(9):147-151.

Liu H,Tan N,Jin X Y. Effect of deformation on microstructure and mechanical properties of aluminum-silicon coating hot stamping steel[J].Heat Treatment of Metals,2019,44(9):147-151.

[19]李彦云,张东升,李超. 基于2000 MPa热成形钢的A柱轻量化设计[J]. 汽车工艺与材料,2022,(6):55-58.

Li Y Y,Zhang D S,Li C. A-pillar lightweight design based on 2000 MPa hot-formed steel[J]. Automobile Technology & Material,2022,(6):55-58.

[20]吴家福,卢平,王合关,等. 变结构汽车A柱钣金件碰撞仿真分析[J]. 汽车实用技术,2022,(18):103-111.

Wu J F,Lu P,Wang H G,et al. Simulation analysis of collision of automobile a-pillar sheet metal parts with variable structure[J]. Automobile Applied Technology,2022,(18):103-111.

[21]王娜,李稚凡,陈新平. 超高强度钢DP1000液压成形A柱的关键技术[J]. 精密成形工程,2017,9(6):6-10.

Wang N,Li Z F,Chen X P. Key technology of AHSS DP1000 hydroforming A pillar[J]. Journal of Netshape Forming Engineering,2017,9(6):6-10.

[22]GB/T 228.1—2021,金属材料拉伸试验第1部分:室温试验方法[S].

GB/T 228.1—2021,Metallic materials—Tensile testing—Part 1: Method of test at room temperature[S].
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9