网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
挤压铸造机压射液压系统性能仿真分析
英文标题:Performance simulation analysis on injection hydraulic system for squeeze casting machine
作者:张晓丽1 2 魏海涛1 2 马志刚1 2 王生金1 2 
单位:1. 兰州兰石集团有限公司能源装备研究院 2. 兰州兰石能源装备工程研究院有限公司 
关键词:挤压铸造机 压射液压系统 压射蓄能器 增压蓄能器 压射速度 
分类号:TH137
出版年,卷(期):页码:2023,48(4):204-209
摘要:

 以4000 t大型智能半固态挤压铸造机为研究对象,搭建压射液压系统仿真模型,通过仿真分析直观地展现了关键参数变化对压射系统性能的影响。仿真结果表明:压射系统动力源选用蓄能器,可完全实现工艺和设备要求。压射蓄能器容积对压射阶段的速度无影响,但随着容积的增大,增压开启时间越早;增压蓄能器容积对压射系统几乎无影响。压射蓄能器设定压力越大,压射阶段可达到的最大压射速度越大,增压开启时间越早,但随着压射蓄能器设定压力减小,无法实现增压;增压蓄能器设定压力对压射阶段无影响,但增压蓄能器设定压力越大,增压后的压力越大。压射蓄能器和增压蓄能器参数影响压射系统性能,需要对液压元件进行合理匹配。研究结果可为后续挤压铸造机压射控制系统的设计提供依据。

 For 4000 t large intelligent semi-solid squeeze casting machine, the simulation model of the injection hydraulic system was built, and the influences of key parameter changes on the performance of injection system were intuitively displayed by simulation analysis. The simulation results show that the accumulator is selected as the power source of the injection system, which can completely meet the requirements of process and equipment. The volume of injection accumulator has no effect on the velocity in the injection stage, but the higher the volumes is, the earlier the opening time of booster is. The volume of booster accumulator has little effect on the injection system. The higher the setting pressure of injection accumulator is, the higher the maximum injection speed can be achieved in the injection stage, and the earlier the booster opening time is. However, as the setting pressure of injection accumulator decreases, the booster cannot be realized. The setting pressure of booster accumulator has no influence on the injection stage, but the higher the setting pressure of booster accumulator is, the higher the pressure after the booster is. The parameters of injection accumulator and booster accumulator affect the performance of injection system, so it is necessary to reasonably match the hydraulic components. Thus, it can provide a basis for the design of injection control system for the subsequent squeeze casting machine.

基金项目:
作者简介:
作者简介:张晓丽(1989-),女,硕士,工程师 E-mail:799656900@qq.com
参考文献:

 
[1]松雷, 邵明,游东东.挤压铸造设备的研究进展与发展趋势
[J].铸造,2010,59(10):1039-1043.


Song L, Shao M, You D D. Research and development of squeezing casting equipment
[J]. China Foundry, 2010, 59(10): 1039-1043.


[2]陈金城, 杨大勇.填充式间接挤压铸造及全卧式LK/HH型挤压铸造机的开发
[J].特种铸造及有色合金,2009,(12):1124-1127.

Chen J C, Yang D Y. Development of filling horizontal indirectional squeezing casting machine (LK/HH)
[J]. Special Casting & Nonferrous Alloys, 2009, (12): 1124-1127.


[3]唐林, 苏世卿,孔亮.振动挤压铸造机压力控制系统优化研究
[J].铸造技术,2019,40(1): 89-92.

Tang L, Su S Q, Kong L. Study on optimization of vibration squeeze casting machine
[J]. Foundry Technology, 2019, 40(1): 89-92.


[4]郗志刚, 柯有权.冷室压铸机压射速度的匀加速控制
[J].铸造技术,2006,27(6):562-564.

Xi Z G, Ke Y Q. Equal accelerating control of the injection speed of the cold chamber die-casting machine
[J].Foundry Technology,2006,27(6):562-564.


[5]马俊. J1128H型数控压铸机压射控制系统的仿真
[D].南京:东南大学, 2014.

Ma J. Simulation of Injection Control System in J1128H-type Die Casting Machine
[D]. Nanjing: Southeast University, 2014.


[6]隋晓东. 卧式冷室压铸机压射液压及控制系统的仿真研究
[D].南京:东南大学, 2011.

Sui X D. Simulation Study on Injection Hydraulic and Control System of Horizontal Cold Chamber Die Casting Machine
[D]. Nanjing: Southeast University, 2011.


[7]李壮云. 液压元件与系统
[M].北京:机械工业出版社,2011.

Li Z Y. Hydraulic Component and System
[M]. Beijing: China Machine Press, 2011.


[8]李欣星. 基于AMEsim的节流调速回路仿真及实验研究
[D].成都:西南交通大学,2018.

Li X X. Simulation and Experimental Study of Throttle Speed Control Loop Based on AMESIM
[D]. Chengdu: Southwest Jiaotong University,2018.


[9]张国泰, 杨静.调速阀出口节流调速系统动态特性仿真研究
[J].盐城工学院学报:自然科学版,2019,32(1): 32-36.

Zhang G T, Yang J. Simulation study on dynamic characteristics of speed regulating valve outlet throttle speed regulating system
[J]. Journal of Yancheng Institute of Technology:Natural Science Edition, 2019, 32(1): 32-36.


[10]付永领, 祁晓野.LMS Imagine.Lab AMESim系统建模和仿真参考手册
[M].北京:北京航空航天大学出版社,2011.

Fu Y L, Qi X Y. Reference Manual of LMS Imagine.Lab AMESim System Modeling and Simulation
[M]. Beijing: Beihang University Press, 2011.


[11]梁全, 谢基晨,聂利伟.液压系统AMESim计算机仿真进阶教程
[M].北京:机械工业出版社,2014.

Liang Q, Xie J C, Nie L W. Advanced Tutorial of Hydraulic System AMESim Computer Simulation
[M]. Beijing: China Machine Press,2014.


[12]李明杰, 武志斐,徐光钊.蓄能器主要参数对液压激振台系统影响的仿真与试验研究
[J].液压与气动,2019,(9):70-77.

Li M J, Wu Z F, Xu G Z. The simulation and experiment research on the influence of main parameters of accumulator on hydraulic excitation table system
[J]. Chinese Hydraulics & Pneumatics, 2019, (9): 70-77.


[13]桑勇, 邵利来,赵健龙,等.基于AMESim蓄能器组的动态特性研究
[J].液压气动与密封,2018,38(1):20-24.

Sang Y, Shao L L, Zhao J L, et al. Study on multiple accumulator in hydraulic system based on AMESim
[J]. Hydraulics Pneumatics & Seals, 2018, 38(1): 20-24.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9