网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
高应变速率下TA1纯钛薄板的J-C本构及失效模型研究
英文标题:Research on J-C constitutive and failure models for TA1 pure titanium sheet under high strain rate
作者:黄艺帆1 2 董芃欣1 2 吴泽霖1 2 曹全梁1 2 谌祺1 2 韩小涛1 2 
单位:1. 华中科技大学 国家脉冲强磁场科学中心  2. 华中科技大学 强电磁工程与新技术国家重点实验室 
关键词:TA1纯钛 动态力学性能 本构模型 失效模型 应力三轴度 
分类号:TG146
出版年,卷(期):页码:2023,48(3):236-243
摘要:

 为探究TA1纯钛的动态力学性能,对0.5 mm厚度的TA1纯钛薄板试样进行了准静态以及不同应变速率下的动态拉伸实验,建立了能够真实反映TA1纯钛在高应变速率和较大应变范围内的塑性变形特征的Johnson-Cook(J-C)本构模型,并对原始模型进行了修正;同时,对不同缺口半径的TA1纯钛拉伸试样进行了准静态拉伸实验,建立了基于应力三轴度的失效模型。将建立的J-C本构与失效模型应用于LS-Dyna中进行仿真模拟,并与实验数据对比,验证了模型的有效性与实用性。

 In order to explore the dynamic mechanical properties of TA1 pure titanium, the quasi-static and dynamic tensile experiments of TA1 pure titanium sheet samples with the thickness of 0.5 mm under different strain rates were carried out, the Johnson-Cook (J-C) constitutive model truly reflecting the plastic deformation characteristics of TA1 pure titanium in high strain rate and large strain range was established, and the original model was modified. Meanwhile, the quasi-static tensile experiments were carried out on TA1 pure titanium tensile samples with different notch radii, and the failure model based on stress triaxiality was established. The established J-C constitutive and failure models were applied to LS-Dyna for simulation, and the validity and practicability of the model were verified by comparing with the experimental data.

基金项目:
国家自然科学基金资助项目(52077092);湖北省重点研发项目(2021BAA174)
作者简介:
作者简介:黄艺帆 (1996-),男,硕士研究生 E-mail:cris@hust.edu.cn 通信作者:韩小涛 (1974-),男,博士,教授 E-mail:xthan@mail.hust.edu.cn
参考文献:

 [1]Qiu Z,Tetsuhide Shimizu,Tomomi Shiratori,et al. Tensile properties and constitutive model of ultrathin pure titanium foils at elevated temperatures in microforming assisted by resistance heating method [J]. Materials & Design,2014,63:389-397.


[2]苏娟华, 周铁柱,任凤章,等. 纯钛高温拉伸性能及断口形貌[J]. 中国有色金属学报,2015,25(6):1471-1479.

Su J H,Zhou T Z,Ren F Z,et al.High-temperature tensile properties and fracture morphology of industrial pure titanium[J]. The Chinese Journal of Nonferrous Metals,2015,25 (6):1471-1478.

[3]Zhang Z Y,Yang H,Li H,et al. Quasi-static tensile behavior and constitutive modeling of large diameter thin-walled commercial pure titanium tube[J]. Materials Science and Engineering,2013,569:96-105. 

[4]韩言, 赵飞,万明攀,等. TC17钛合金热流变行为及组织演变机制研究[J]. 稀有金属,2020,44(3):234-241.

Han Y, Zhao F, Wan M P,et al. Thermal flow behaviors and microstructure evolution of TC17 alloy[J]. Chinese Journal of Rare Metals,2020, 44(3):234-241.

[5]罗铜, 许磊,刘建华,等. 微波烧结制备钛铝合金研究[J]. 稀有金属,2020,44(5):469-475.

Luo T, Xu L, Liu J H,et al. Study on preparation of titanium aluminum alloy by microwave sintering[J]. Chinese Journal of Rare Metals,2020,44(5):469-475.

[6]韩秀峰, 王伦,朱明亮,等. TA19钛合金电子束焊接头微观组织与性能研究[J]. 稀有金属,2021,45(7):778-785.

Han X F,Wang L,Zhu M L,et al. Microstructures and mechanical properties research of electron beam welding joint of TA19 titanium alloy[J]. Chinese Journal of Rare Metals,2021,45(7):778-785.

[7]刘大海, 陈劲东,李波,等. TA18中强钛合金管数控弯曲成形工艺与结构参数显著性分析[J]. 锻压技术,2021,46(4):156-165.

Liu D H,Chen J D,Li B,et al. NC bending process and significance analysis on structural parameters of TA18 medium strength titanium alloy tube [J]. Forging & Stamping Technology,2021,46(4):156-165.

[8]Wu Z L, Cao Q L, Fu J Y,et al. An inner-field uniform pressure actuator with high performance and its application to titanium bipolar plate forming [J]. International Journal of Machine Tools and Manufacture, 2020,155:103570.

[9]Dong P X, Li Z Z, Feng S,et al. Fabrication of titanium bipolar plates for proton exchange membrane fuel cells by uniform pressure electromagnetic forming [J]. International Journal of Hydrogen Energy, 2021,46(78): 38768-38781.

[10]张贵华, 江海涛,吴波,等. 退火温度对纯钛TA1织构及各向异性的影响 [J]. 中南大学学报: 自然科学版,2019,50(4):806-813.

Zhang G H,Jiang H T,Wu B,et al. Effects of the annealing temperature on the texture and anisotropy of pure titanium TA1 [J]. Journal of Central South University: Science and Technology,2019,50 (4): 806-813.

[11]丁凌, 王志录,孙前江,等. TC6钛合金超塑性变形 [J]. 航空材料学报,2016,36(6):23-28.

Ding L,Wang Z L,Sun Q J,et al.TC6 titanium alloy superplastic deformation [J]. Journal of Aviation Materials,2016,36 (6): 23-28.

[12]Johnson G R,Cook W H. A consistitutive model and data for metals subjected to large strains,high strain rates and high temperatures [A]. Proceedings of the 7th International Symposim on Ballistic [C]. Hague, 1983.

[13]Steinberg D J,Cochran S G,Guinan M W. A constitutive model for metals applicable at high-strain rate [J]. Journal of Applied Physics,1980,51(3):1498-1504.

[14]Chen J L,Li J W,Li Z X,et al. Experiment research on rate-dependent constitutive model of Q420 steel [J]. Construction & Building Materials,2017,153:816-823.

[15]邓将华, 唐超,李春峰,等. TA1本构模型的确定 [J].塑性工程学报,2012,19(6):114-117.

Deng J H,Tang C,Li C F,et al. Determination of TA1 constitutive model [J]. Journal of Plasticity Engineering,2012,19 (6):114-117.

[16]苏娟华, 韩亚玮,任风章,等. 纯钛TA1热压缩变形行为及本构方程 [J]. 材料热处理学报,2014,35(5):196-200.

Su J H,Han Y W,Ren F Z,et al. Industrial pure titanium TA1 thermal compression deformation behavior and constitutive equation [J]. Transactions of Materials and Heat Treatment,2014,35 (5):196-200.

[17]陈刚, 陈忠富,徐伟芳,等. 45钢的J-C损伤失效参 量研究 [J]. 爆炸与冲击,2007,27(2):131-135.

Chen G,Chen Z F,Xu W F, et al. 45 steel J-C injury failure parameter study[J]. Explosion and Shock Waves,2007,27 (2): 131-135.

[18]朱浩, 朱亮,陈剑虹. 应力三轴度和应变速率对6063铝合金力学性能的影响及材料表征 [J]. 材料科学与工程学报,2007,27(3):358-362.

Zhu H,Zhu L,Chen J H. Influence of stress triaxial degree and strain rate on the mechanical properties of 6063 aluminum alloy and material characterization [J]. Journal of Materials Science and Engineering,2007,27 (3): 358-362.

[19]Lou Y S, Huh H. Extension of a shear-controlled ductile fracture model considering the stress triaxiality and the Lode parameter [J]. International Journal of Solids and Structures,2013,50(2):447-455.

[20]ISO 6892-1:2016,Metallic materials—Tensile testing—Part 1:Method of test at room temperature [S].

[21]毛云飞. AA5052铝合金高速下本构及断裂模型研究 [D]. 长沙:湖南大学,2019.

Mao Y F. Study on Constitutive and Fracture Model of AA5052 Aluminum Alloy [D]. Changsha: Hunan University,2019.

[22]Huh H,Kang W J,Han S S. A tension split Hopkinson bar for investigating the dynamic behavior of sheet metal [J]. Experimental Mechanics,2002,42(1):8- 17.

[23]Johnson G R,Cook W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics,1985,21(1): 31-48.

[24]门建兵, 卢易浩,蒋建伟,等. 杆式EFP用钽钨合金JC失效模型参数 [J]. 高压物理学报,2020,34(6):136-143.

Men J B,Lu Y H,Jiang J W,et al. JC failure model parameters of tantalum-tungsten alloy for rod EFP [J]. Chinese Journal of High Pressure Physics,2020,34 (6): 136-143.

[25]Bao Y,Wierzbicki T. On fracture locus in the equivalent strain and stress triaxiality space [J]. International Journal of Mechanical Sciences,2004,46 (1): 81-98.

[26]肖新科. 双层金属靶的抗侵彻性能和Taylor杆的变形与断裂 [D]. 哈尔滨:哈尔滨工业大学,2010.

Xiao X K. The Ballistic Resistance of Double-layered Metallic Target and the Deformation & Fracture of Taylor Rod [D]. Harbin: Harbin Institute of Technology,2010.

[27]衣海娇, 甄莹,曹宇光,等.6061-T6铝合金断裂应变与应力三轴度关系研究 [J]. 机械强度,2020,42(3):551-558.

 
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9