网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于滑块轻量化设计的减振研究
英文标题:Vibration reduction research based on lightweight design of slider
作者:韩经伟 丁武学 孙宇 王敏 刘永昕 
单位:南京理工大学 机械工程学院 
关键词:曲柄滑块机构 惯性力 拓扑优化 振动响应 减振 
分类号:TG315.5+1
出版年,卷(期):页码:2023,48(3):175-179
摘要:

为了降低机械压力机的振动、提高工件质量,对压力机的曲柄滑块机构产生的惯性力特点进行分析,得出滑块质量是影响惯性力的主要因素之一。以减轻滑块质量、降低等效惯性力为目标,在不影响滑块强度和刚度的情况下,利用ANSYS Workbench的拓扑优化板块对滑块进行拓扑优化分析,通过仿真分析得出优化前后滑块的质量降低了16%,验证了该方法的可行性。同时,建立了压力机单自由度系统振动模型,以机身振动响应为目标,分析比较滑块拓扑优化前后的振动响应曲线。结果表明:滑块拓扑优化前后最大振动幅值降低了14.3%,验证了该方法的可靠性,能够为机械压力机的减振提供一定的参考。 

  In order to reduce the vibration of mechanical press and improve the quality of workpiece, the characteristics of inertia force produced by slider crank mechanism of press were analyzed. And the result shows that the mass of slider is one of the main factors affecting the magnitude of inertia force. Then, with the goal of reducing the mass of slider and the equivalent inertia force, without affecting the strength and stiffness of slider, the topology optimization analysis of the slider was carried out by using the topology optimization module of ANSYS Workbench. And through simulation analysis, it is found that the mass of slider before and after optimization is reduced by 16%, which verifies the feasibility of this method. At the same time, the vibration model of single-degree-of-freedom system for press was established, and taking the vibration response of fuselage as the objective, the vibration response curves of slider before and after the slider topology optimization were analyzed and compared. The results show that the maximum vibration amplitude is reduced by 14.3% before and after the slider topology optimization, which verifies the reliability of the method and provides a certain reference for the vibration reduction of mechanical press.

基金项目:
江苏省重大科技成果转化项目(BA2021067)
作者简介:
作者简介:韩经伟(1998-),男,硕士研究生 E-mail:516568962@qq.com 通信作者:丁武学(1966-),男,博士,副教授 E-mail:wuxuexie@mail.njust.edu.cn
参考文献:

 [1]赵宏松, 陈林书, 谈宇. 高速重载压力机传动系统参数设计[J]. 锻压装备与制造技术, 2020, 55(5): 33-36.


Zhao H S, Chen L S, Tan Y. Parameter design of transmission system of high speed and heavy load press[J]. China Metalforming Equipment & Manufacturing Technology, 2020, 55(5): 33-36.

[2]陈苏权. 压力机冲裁振动控制实验研究[J]. 装备制造技术, 2008, (6): 13-15.

Chen S Q. Experimental studies on control of press′s punching vibration[J]. Equipment Manufacturing Technology, 2008, (6): 13-15.

[3]Otsu M, Yamagata C, Osakada K. Reduction of blanking noise by controlling press motion[J]. CIRP Annals-Manufacturing Technology, 2003, 52(1): 245-248.

[4]张世顺. 落料压力机反向载荷产生机理及控制研究[D]. 济南: 山东大学, 2017.

Zhang S S. Studies on Forming Mechanism and Control Methods of Reverse Tonnage in Blanking Press[D]. Jinan: Shandong University, 2017.

[5]蔺海鸥. 高速压力机的振动研究及计算机仿真[D]. 西安: 西安理工大学, 2005.

Lin H O. Vibration Research of High-speed Press and Computer Simulation[D]. Xi′an: Xi′an University of Technology, 2005.

[6]丁旺. 高速精密数控冲床的振动研究[D]. 南京: 南京理工大学, 2011.

Ding W. Vibration Research of High-speed Precision CNC Punch[D]. Nanjing: Nanjing University of Science and Technology, 2011.

[7]金旭星. 基于MATLAB的高速冲床系统振动分析及平衡策略研究[J]. 机械设计与制造, 2013, (7): 269-272.

Jin X X. Study on system vibration analysis and balancing strategy of high-speed press based on MATLAB[J]. Machinery Design & Manufacture, 2013, (7): 269-272.

[8]闵文君. OCP-60E型机械压力机振动检测与抑制研究[D]. 宁波: 宁波大学, 2020.

Min W J. Research on Vibration Detection and Vibration Suppression of OCP-60E Mechanical Press[D]. Ningbo: Ningbo University, 2020.

[9]徐腾. 基于多领域统一仿真的高速冲床振动分析与减振研究[D]. 广州: 华南理工大学, 2017.

Xu T. Research on Vibration Analysis and Vibration Reduction of High-speed Punching Press: Multidomain Unified Simulation[D]. Guangzhou: South China University of Technology, 2017.

[10]王苏号, 贾方, 王兴松. 基于Optistruct的伺服压力机机身拓扑优化[J]. 锻压装备与制造技术, 2007, (6): 34-36.

Wang S H, Jia F, Wang X S. Topology optimization for servo press body based on OptiStruct[J]. China Metalforming Equipment & Manufacturing Technology, 2007, (6): 34-36.

[11]张义民. 机械振动[M]. 北京: 清华大学出版社, 2007.

Zhang Y M. Mechanical Vibration[M]. Beijing: Tsinghua University Press, 2007.

[12]彭发忠, 王传英, 柴恒辉,等. 基于分层结构的伺服压力机滑块轻量化设计[J]. 清华大学学报: 自然科学版, 2020, 60(12): 1016-1022. 

Peng F Z, Wang C Y, Chai H H, et al. Lightweight slider design for a servo press based on its layered structure[J]. Journal of Tsinghua University: Science and Technology, 2020, 60(12): 1016-1022.

 
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9