网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
轧制及T6 处理对SiCp / 6061Al 复合材料拉伸力学性能的影响
英文标题:Influence of rolling and T6 treatment on tensile mechanical properties for SiCp / 6061Al composites
作者:刘守法1  乔 勋1  周兆锋2  刘丹成3 
单位:1. 西京学院  2. 盐城工学院  3. 西安航天发动机有限公司 
关键词:SiCp /6061Al 复合材料  热轧  T6 处理  显微组织  抗拉强度 
分类号:TB331
出版年,卷(期):页码:2023,48(1):165-170
摘要:

 对铸态SiCp /6061Al 复合材料分别实施了热轧及热轧+T6 处理两种后处理工艺, 采用扫描电镜、X 射线衍射仪及拉伸试验设备, 研究了热轧及T6 处理对复合材料显微组织及抗拉强度的影响。结果表明, 热轧可以有效地细化铸态SiCp /6061Al 复合材料内的增强颗粒, 并消除材料内部孔洞, 从而提高材料的抗拉强度。试样在拉伸外力作用下, 在增强颗粒与基材间的界面处首先出现裂纹, 裂纹扩展后使试样整体断开, 热轧后对试样进行T6 处理可以有效地消除轧制引起的增强颗粒与铝基材界面处的残余应力, 提高增强颗粒与基材间的浸润性, 从而提高材料的抗拉强度。在拉伸外力作用下试样中的增强颗粒首先开裂, 裂纹扩展后使试样整体断裂。SiCp /6061Al 复合材料随着轧制压缩率的增大, 材料的抗拉强度先增大后减小, 轧制压缩率为60%的热轧+T6 处理的试样在室温和200 ℃下的抗拉强度均达到最大, 分别为350 和290 MPa。

 The as-cast SiCp /6061Al composites was subjected to two post-treatment processes of hot rolling and hot rolling+T6 treatment, respectively. Then, the influences of hot rolling and T6 treatment on the microstructure and tensile strength of the composites were studied by scanning electron microscope, X-ray diffractometer and tensile test equipment. The results show that hot rolling can effectively refine the reinforced particles in the as-cast SiCp /6061Al composites and eliminate the internal pores of material to improve the tensile strength of material. Under the action of external tensile force, the sample first appears cracks at the interface between reinforced particles and base material, and then the cracks expand to disconnect the sample as a whole. T6 treatment for sample after hot rolling can effectively eliminate the residual stress at the interface between reinforced particles and aluminum base material caused by rolling, improve the wettabilitybetween reinforced particles and base material, so as to improve the tensile strength of material. Under the action of external tensile force,the reinforced particles in the sample crack first, and then the whole sample breaks after the cracks expand. With the increasing of rolling compression ratio, the tensile strength of SiCp /6061Al composites increases first and then decreases, and the tensile strength of hotrolling+T6 treatment sample with a rolling compression ratio of 60% reaches the maximum at room temperature and 200 ℃, which are 350

and 290 MPa, respectively.
基金项目:
陕西省自然科学基础研究计划项目(2020JM-645)
作者简介:
作者简介: 刘守法(1980-), 男, 硕士, 副教授 E-mail: liushoufa807456@ 163. com
参考文献:

 [1]  石文超, 汪吉赛, 曹洪, 等. 纳米压痕和反演分析法确定Al18B4O33w /2024Al 复合材料基体力学性能[J]. 塑性工程学报, 2021, 28 (7): 169-174.


Shi W C, Wang J S, Cao H, et al. Determination of mechanical properties of matrix in Al18B4O33w /2024Al composites by nanoindentation and reverse analysis method [J]. Journal of Plasticity Engineering, 2021, 28 (7): 169 -174.

[2]  刘守法, 周兆锋. 第二相增强金属基复合材料研究进展[J].热加工工艺, 2018, 47 (4): 14-16, 21.

Liu S F, Zhou Z F. Research progress on secondary phase-reinforced metal matrix composite [ J]. Hot Working Technology, 2018, 47 (4): 14-16, 21.

[3]  Ezatpour H R, Torabi P M, Sajjadi S A, et al. Microstructure, mechanical analysis and optimal selection of 7075 aluminum alloy based composite reinforced with alumina nanoparticles [J]. Materials Chemistry and Physics, 2016, 178: 119-127.

[4]  刘守法, 王晋鹏, 吴松林, 等. 基于镀铜SiC-Cu 颗粒制备石墨烯片/ SiC-Cu 和碳纳米管/ SiC-Cu 增强体[J]. 复合材料学报, 2017, 34 (11): 2544-2549.

Liu S F, Wang J P, Wu S L, et al. Preparation of graphene nano sheets/ SiC-Cu and carbon nano tubes/ SiC-Cu reinforcements based on Cu plating SiC-Cu particles [ J]. Acta Materiae Compositae Sinica, 2017, 34 (11): 2544-2549.

[5]  Mohanavel V, Karthick M, Paul D L B. Fabrication and development of aluminum alloy AA6063-titanium carbide composite prepared by in situ method [J]. International Journal of Applied Engineering Research, 2015, 10 (5): 12475-12482.

[6]  Liu S F, Wang Y W, Muthuramalingam T, et al. Effect of B4C and MOS2 reinforcement on micro structure and wear properties of aluminum hybrid composite for automotive applications [J]. Composites Part B: Engineering, 2019, 176: 107329.

[7]  刘守法, 夏祥春, 王晋鹏. 搅拌摩擦加工工艺制备ZrO2 颗粒增强镁基复合材料的组织与力学性能[J]. 机械工程材料,2016, 40 (1): 35-38.

Liu S F, Xia X C, Wang J P. Microstructure and mechanical properties of ZrO2 particles reinforced magnesium-based composites preparated by friction stir processing [J]. Materials for Mechanical Engineering, 2016, 40 (1): 35-38.

[8]  Adebisi A A, Maleque M A, Ali M Y, et al. Effect of variable particle size reinforcement on mechanical and wear properties of 6061Al-SiCp composite [ J]. Composite Interfaces, 2016, 23(6): 533-547.


[9]  Baradeswaran A, Elaya Perumal A. Study on mechanical and wear properties of Al 7075/ Al2O3 / graphite hybrid composites [ J]. Composites Part B: Engineering, 2014, 56: 464-471.

[10] David R S J, Robinson Smart D S, Dinaharan I. Microstructure and some mechanical properties of fly ash particulate reinforced AA6061 aluminum alloy composites prepared by compocasting [J]. Materials & Design, 2013, 49 (16): 28-34.

[11] Soltani S, Khosroshahi R A, Mousavian R T, et al. Stir casting process for manufacture of Al-SiC composites [J]. Rare Metals, 2017, 36 (7): 581-590.

[12] David R S J, Dinaharan I, Mashinini P M. High temperature sliding wear behavior of AA6061/ fly ash aluminum matrix composites prepared using compocasting process [ J]. Tribology Materials Surfaces & Interfaces, 2017, 11 (1): 39-46.

[13] Jayakumar E, Jacob J C, Rajan T P D, et al. Processing and characterization of functionally graded aluminum (A319) -SiCp metallic composites by centrifugal casting technique [J]. Metallurgical and Materials Transactions A, 2016, 47 (8): 4306-4315.

[14] Wang D, Zheng Z, Lyu J, et al. Enhanced thermal conductive 3D-SiC/ Al-Si-Mg interpenetrating composites fabricated by pressureless infiltration [J]. Ceramics International, 2016, 43 (2):1755-1761.

[15] Ghomashchi M R, Vikhrov A. Squeeze casting: An overview [J]. Journal of Materials Processing Technology, 2000, 101(1): 1-9.

[16] Sarfraz M H, Jahanzaib M, Ahmed W, et al. Multi-response parametric optimization of squeeze casting process for fabricating Al 6061-SiC composite [J]. The International Journal of Advanced Manufacturing Technology, 2019, 102 (1-4): 759-773.

[17] Erturun V, Karami M B. Effects of reciprocating extrusion process on mechanical properties of AA 6061/ SiC composites [J]. Transactions of Nonferrous Metals Society of China (English Edition), 2016, 26 (2): 328-338.

[18] ASTM B557-15, Standard test methods for tension testing wrought and cast aluminum-and magnesium-alloy products [S].

[19] Sarfraz M H, Jahanzaib M, Ahmed W, et al. Multi-response parametricoptimization of squeeze casting process for fabricating Al6061-SiC composite [J]. International Journal of Advanced Manufacturing Technology, 2019, 102: 759-773.

[20] Chu H S, Liu K S, Yeh J W. Study of 6061-AlO composites produced by reciprocating extrusion [J]. Metallurgical & Materials Transactions A, 2000, 31 (10): 2587-2596.

[21] 欧阳攀, 叶鹏, 欧晓昇, 等. 热拉伸变形对AZ21B 镁合金板材力学性能与组织的影响[J]. 轻合金加工技术, 2011, 39 (2): 21-24.

Ouyang P, Ye P, Ou X S, et al. Influence of thermal tensile deformation on mechanical properties and microstructure of AZ21B magnesium alloy [J]. Light Alloy Fabrication Technology, 2011,39 (2): 21-24.

[22] Gupta M, Surappa M K, Qin S. Effect of interfacial characteristics on the failure-mechanism mode of a SiC reinforced A1 based metalmatrix composite [J]. Journal of Materials Processing Technology,1997, 67 (1-3): 94-99.

[23] 吴洁君, 王殿斌. SiCp 增强铝基复合材料的铸造缺陷分析[J]. 金属学报, 1999, 35 (1): 103-108.

Wu J J, Wang D B. Analysis of casting defects in SiCp reinforced aluminum matrix composites [ J ]. Acta Metallurgica Sinica,1999, 35 (1): 103-108.


 

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9