网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
三维剧烈塑性法轧制F45MnVS 超细晶钢棒及细化机理
英文标题:Three dimensional severe plastic rolling of F45MnVS ultrafine grain steel rod and its refining mechanism
作者:牛 犇1  庞玉华1  孙 琦1  赵嘉豪1  刘 东2  张 喆2 
单位:1. 西安建筑科技大学 2. 西北工业大学 
关键词:F45MnVS   轧制  晶粒细化  动态回复  动态再结晶  位错塞积 
分类号:TG335. 62
出版年,卷(期):页码:2023,48(1):149-158
摘要:

 以F45MnVS 钢棒为研究对象, 利用自主研发的3D-SPD 轧机, 经直径压缩率为44%的1 道次轧制成形后风冷, 制备了直径为Φ25 mm 的超细晶棒材; 借助显微检测探究了变形后组织和晶粒的演变规律及细化机制。结果表明: 变形后棒料中的铁素体含量增加, 其中边部的铁素体增量最多, 增加了26. 1%; 组织和晶粒均得到了细化, 平均晶粒尺寸细化至2. 8 μm, 珠光体片层间距细化至0. 21 μm, 且晶粒无明显取向性; 变形后, 屈服强度、抗拉强度和冲击功分别提升了17. 2%、10. 5%和48. 3%, 伸长率降低了3. 1%。铁素体含量的增加与大变形下应变诱导奥氏体向铁素体转变有关; 组织和晶粒细化的主要原因为大应变导致的动态回复、动态再结晶和应变诱导铁素体转变; 晶粒的弱取向性主要是该变形的扭转力更大和变形区较长所致; 材料强度的提升得益于组织和晶粒细化, 而韧性的提升还与相变诱导铁素体含量的增加有关。

 For F45MnVS steel rod, using the self-developed 3D-SPD rolling mill, the ultrafine grain bar with a diameter of Φ25 mm was prepared by one-pass rolling with a reducing diameter rate of 44% and then air-cooled, and the evolution law and refinement mechanism of microstructure and grain after deformation were investigated by means of microscopic examination. The results show that the ferrite content in the bar after deformation increases, among them, the increase in the side is the largest with increasing by 26. 1%, the microstructure and grains are both refined, the average grain size is refined to 2. 8 μm, the pearlite lamellar spacing is refined to 0. 21 μm, and the deformed grains are not significantly oriented. After deformation, the yield strength, tensile strength and impact energy are increased by 17. 2%, 10. 5% and 48. 3%, respectively, and the elongation is slightly decreased by 3. 1%. However, the increased ferrite content is associated with strain-induced austenite to ferrite transformation at large deformation, and the main reasons for the microstructure and grain refinement are the dynamic recovery, dynamic recrystallization and strain-induced ferrite transformation caused by large strain. The weak orientation of grains is mainly caused by the large torsional force and longer deformation zone of this deformation, and the improvement of material strength is due to the refinement of microstructure and grains, and the improvement of toughness is also related to the increasing

of phase transformation-induced ferrite content. 

 

基金项目:
陕西省重点研发计划项目(2020GY-253)
作者简介:
作者简介: 牛 犇(1995-), 男, 硕士 E-mail: 2494166328@ qq. com 通信作者: 庞玉华(1965-), 女, 博士, 教授 E-mail: pyhyyl@ 126. com
参考文献:

 [1]  王占花, 惠卫军, 谢志奇, 等. 回火对钒钛微合金化Mn-Cr系贝氏体型非调质钢组织和性能的影响[J]. 金属学报,2020, 56 (11): 1441-1451.


Wang Z H, Hui W J, Xie Z Q, et al. Effects of tempering temperature on microstructure and mechanical properties of a Mn-Cr type bainitic forging steel [J]. Acta Metallurgica Sinica, 2020,

56 (11): 1441-1451.

[2]  Gomez G, Pérez T, Bhadeshia H K D H. Air cooled bainitic steels for strong, seamless pipes Part 1-Alloy design, kinetics and microstructure [J]. Metal Science Journal, 2009, 25 (12): 1501-1507.

[3]  邹海兆. F45MnVS 钢热变形行为及组织性能研究[D]. 马鞍山: 安徽工业大学, 2017.

Zou H Z. Research on Hot Deformation Behaviors, Microstructures and Properties of F45MnVS Steel [D]. Ma′anshan: Anhui University of Technology, 2017.

[4]  朱帅帅, 王章忠, 毛向阳, 等. 铁素体-珠光体型非调质钢强韧化技术研究进展[J]. 材料导报, 2016, 30 (9): 122-126.

Zhu S S, Wang Z Z, Mao X Y, et al. A review adout strengthening-toughening technologies for ferrite-pearlite non-quenched and tempered steels [ J]. Material Review, 2016, 30 (9): 122 -

126.

[5]  刘石虹, 王新华, 戴观文, 等. 高洁净度汽车用非调质钢中非金属夹杂物[J]. 钢铁, 2008, 43 (5): 35-39.

Liu S H, Wang X H, Dai G W, et al. Investigation on non-metallic inclusions in hot forging steels of high cleanliness [J]. Iron Steel, 2008, 43 (5): 35-39.

[6]  Das S, Haldar A. Continuously cooled ultrafine bainitic steel with excellent strength-elongation combination [J]. Metallurgical and Materials Transactions, 2014, 45 (4): 1844-1854.

[7]  Xu Z B, Hui W J, Wang Z H, et al. Mechanical properties of a microalloyed bainitic steel after hot forging and tempering [ J]. Journal of Iron and Steel Research International, 2017, 24 (11):1085-1094.

[8]  Wright P. Method for producing a precipitation hardenable martensitic low alloy steel forging [P]. U. S: US04824492A, 1989-04-25.

[9]  Sankaran S, Subramanya S V, Gouthama, et al. Low cycle fatigue behaviour of a multiphase medium carbon microalloyed steel processed through rolling [J]. Scripta Materialia, 2003, 49 (6):503-508.

[10] 常开地, 王萍, 刘卫萍. 非调质钢的发展现状和应用进展[J]. 金属热处理, 2011, 36 (3): 80-85.

Chang K D, Wang P, Liu W P. Development status and application of non-quenched and tempered steel [J]. Heat Reatment of Metals, 2011, 36 (3): 80-85.

[11] Bagherpour E, Pardis N, Reihanian M, et al. An overview on severe plastic deformation: Research status, techniques classification, microstructure evolution, and applications [J]. The International Journal of Advanced Manufacturing Technology, 2019, 100(5-8): 1647-1694.

[12] Estrin Y, Vinogradov A. Extreme grain refinement by severe plastic deformation: A wealth of challenging science [J]. Acta Materialia. , 2013, 61 (13): 782-817.

[13] 任伟杰, 林金保. 大塑性变形技术在工业领域的应用研究进展[J]. 材料导报, 2015, 29 (7): 89-94.

Ren W J, Lin J B. Industrial application of severe plastic deformation technology [ J]. Material Review, 2015, 29 ( 7): 89 -94.    

[14] Lowe T C, Valiev R Z. The use of severe plastic deformation techniques in grain refinement [J]. JOM, 2004, 5 (10): 64-68.

[15] Hu H J, Wang H, Zhai Z Y, et al. Effects of channel angles on extrusion-shear for AZ31 magnesium alloy: Modeling and experiments [J]. The International Journal of Advanced Manufacturing Technology, 2015, 76 (9-12): 1621-1630.

[16] Kaveh E, Takeshi D, Makoto A, et al. High-pressure torsion of titanium at cryogenic and room temperatures: Grain size effect on allotropic phase transformations [J]. Acta Materialia, 2014, 68(3): 207-213.

[17] Pang Y H, Lin P C, Sun Q, et al. Experimental and numerical analyses of 45 steel during three dimensional severe plastic deformation (3D-SPD) [J]. Archives of Civil and Mechanical Engineering,2020, 20 (4): 1-11.

[18] Zhang Z, Liu D, Wang Y S, et al. A novel method for preparing bulk ultrafine-grained material: Three dimensional severe plastic deformation [J]. Materials Letters, 2020, 276: 128209.

[19] 林鹏程, 庞玉华, 孙琦, 等. 45 钢块体超细晶棒材3D-SPD 轧制法[J]. 金属学报, 2021, 57 (5): 605-612.

Lin P C, Pang Y H, Sun Q, et al. 3D-SPD rolling method of 45 steel ultrafine grained bar with bulk size [J]. Acta Metallurgica Sinica, 2021, 57 (5): 605-612.

[20] 刘东, 张润强, 庞玉华. 一种预测大尺寸中碳钢超细晶棒材晶粒尺寸的方法及模型[P]. 中国: 10810189. 6, 2020- 12-08.    

Liu D, Zhang R Q, Pang Y H. A method and model for predicting grain size of large size medium carbon steel ultrafine crystal bar [P]. China: 10810189. 6, 2020-12-08.

[21] 刘东, 庞玉华, 陶镳. 一种F+P 型非调质钢的3D-SPD 超细晶棒材成形方法[P]. 中国: 10809863. 9, 2021-06-01.

Liu D, Pang Y H, Tao B. A 3D-SPD superfine crystal bar forming method for F+P type non-quenched and tempered steel [P]. China:10809863. 9, 2021-06-01.

[22] Bengochea R, López B, Gutierrez I. Microstructural evolution during the austenite-to-ferrite transformation from deformed austenite [J]. Metallurgical and Materials Transactions A, 1998, 29 (2):417-426.

[23] Aghamohammadi H, Hosseinipour S J, Rabiee S M, et al. Texture-microstructure correlation in hot-rolled AZ31 [J]. Transactions of the Indian Institute of Metals, 2019, 72 (72): 1775-

1781.

[24] Dronhofer A, et al. The evolution of dislocationdensity during heat treatment and creep of tempered martensite ferritic steels [ J]. Acta Materialia, 2003, 51 ( 16): 4847 -4862.

[25] 莫文锋. 珠光体片间距的热力学控制及其对钢力学性能的影响[J]. 钢铁钒钛, 2021, 42 (5): 175-179.

Mo W F. Thermodynamic control of pearlite sheet spacing and its effect omechanical properties of steel [J]. Iron Steel Vanadium Titanium, 2021, 42 (5): 175-179.

[26] Dzioba I, Gajewski M, Neimitz A. Studies of fracture processes in Cr-Mo-V ferritic steel with various types of microstructures [J]. International Journal of Pressure Vessels and Piping, 2010, 87(10): 575-586.

[27] 周世同, 李昭东, 潘涛, 等. 中碳珠光体型高速车轮钢的韧化机理[J]. 钢铁, 2019, 54 (2): 75-82.

Zhou S T, Li Z D, Pan T, et al. Toughening mechanism of medium carbon pearlitic steels for high speed wheel [J]. Iron Steel,2019, 54 (2): 75-82.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9