[1] 王占花, 惠卫军, 谢志奇, 等. 回火对钒钛微合金化Mn-Cr系贝氏体型非调质钢组织和性能的影响[J]. 金属学报,2020, 56 (11): 1441-1451.
Wang Z H, Hui W J, Xie Z Q, et al. Effects of tempering temperature on microstructure and mechanical properties of a Mn-Cr type bainitic forging steel [J]. Acta Metallurgica Sinica, 2020,
56 (11): 1441-1451.
[2] Gomez G, Pérez T, Bhadeshia H K D H. Air cooled bainitic steels for strong, seamless pipes Part 1-Alloy design, kinetics and microstructure [J]. Metal Science Journal, 2009, 25 (12): 1501-1507.
[3] 邹海兆. F45MnVS 钢热变形行为及组织性能研究[D]. 马鞍山: 安徽工业大学, 2017.
Zou H Z. Research on Hot Deformation Behaviors, Microstructures and Properties of F45MnVS Steel [D]. Ma′anshan: Anhui University of Technology, 2017.
[4] 朱帅帅, 王章忠, 毛向阳, 等. 铁素体-珠光体型非调质钢强韧化技术研究进展[J]. 材料导报, 2016, 30 (9): 122-126.
Zhu S S, Wang Z Z, Mao X Y, et al. A review adout strengthening-toughening technologies for ferrite-pearlite non-quenched and tempered steels [ J]. Material Review, 2016, 30 (9): 122 -
126.
[5] 刘石虹, 王新华, 戴观文, 等. 高洁净度汽车用非调质钢中非金属夹杂物[J]. 钢铁, 2008, 43 (5): 35-39.
Liu S H, Wang X H, Dai G W, et al. Investigation on non-metallic inclusions in hot forging steels of high cleanliness [J]. Iron Steel, 2008, 43 (5): 35-39.
[6] Das S, Haldar A. Continuously cooled ultrafine bainitic steel with excellent strength-elongation combination [J]. Metallurgical and Materials Transactions, 2014, 45 (4): 1844-1854.
[7] Xu Z B, Hui W J, Wang Z H, et al. Mechanical properties of a microalloyed bainitic steel after hot forging and tempering [ J]. Journal of Iron and Steel Research International, 2017, 24 (11):1085-1094.
[8] Wright P. Method for producing a precipitation hardenable martensitic low alloy steel forging [P]. U. S: US04824492A, 1989-04-25.
[9] Sankaran S, Subramanya S V, Gouthama, et al. Low cycle fatigue behaviour of a multiphase medium carbon microalloyed steel processed through rolling [J]. Scripta Materialia, 2003, 49 (6):503-508.
[10] 常开地, 王萍, 刘卫萍. 非调质钢的发展现状和应用进展[J]. 金属热处理, 2011, 36 (3): 80-85.
Chang K D, Wang P, Liu W P. Development status and application of non-quenched and tempered steel [J]. Heat Reatment of Metals, 2011, 36 (3): 80-85.
[11] Bagherpour E, Pardis N, Reihanian M, et al. An overview on severe plastic deformation: Research status, techniques classification, microstructure evolution, and applications [J]. The International Journal of Advanced Manufacturing Technology, 2019, 100(5-8): 1647-1694.
[12] Estrin Y, Vinogradov A. Extreme grain refinement by severe plastic deformation: A wealth of challenging science [J]. Acta Materialia. , 2013, 61 (13): 782-817.
[13] 任伟杰, 林金保. 大塑性变形技术在工业领域的应用研究进展[J]. 材料导报, 2015, 29 (7): 89-94.
Ren W J, Lin J B. Industrial application of severe plastic deformation technology [ J]. Material Review, 2015, 29 ( 7): 89 -94.
[14] Lowe T C, Valiev R Z. The use of severe plastic deformation techniques in grain refinement [J]. JOM, 2004, 5 (10): 64-68.
[15] Hu H J, Wang H, Zhai Z Y, et al. Effects of channel angles on extrusion-shear for AZ31 magnesium alloy: Modeling and experiments [J]. The International Journal of Advanced Manufacturing Technology, 2015, 76 (9-12): 1621-1630.
[16] Kaveh E, Takeshi D, Makoto A, et al. High-pressure torsion of titanium at cryogenic and room temperatures: Grain size effect on allotropic phase transformations [J]. Acta Materialia, 2014, 68(3): 207-213.
[17] Pang Y H, Lin P C, Sun Q, et al. Experimental and numerical analyses of 45 steel during three dimensional severe plastic deformation (3D-SPD) [J]. Archives of Civil and Mechanical Engineering,2020, 20 (4): 1-11.
[18] Zhang Z, Liu D, Wang Y S, et al. A novel method for preparing bulk ultrafine-grained material: Three dimensional severe plastic deformation [J]. Materials Letters, 2020, 276: 128209.
[19] 林鹏程, 庞玉华, 孙琦, 等. 45 钢块体超细晶棒材3D-SPD 轧制法[J]. 金属学报, 2021, 57 (5): 605-612.
Lin P C, Pang Y H, Sun Q, et al. 3D-SPD rolling method of 45 steel ultrafine grained bar with bulk size [J]. Acta Metallurgica Sinica, 2021, 57 (5): 605-612.
[20] 刘东, 张润强, 庞玉华. 一种预测大尺寸中碳钢超细晶棒材晶粒尺寸的方法及模型[P]. 中国: 10810189. 6, 2020- 12-08.
Liu D, Zhang R Q, Pang Y H. A method and model for predicting grain size of large size medium carbon steel ultrafine crystal bar [P]. China: 10810189. 6, 2020-12-08.
[21] 刘东, 庞玉华, 陶镳. 一种F+P 型非调质钢的3D-SPD 超细晶棒材成形方法[P]. 中国: 10809863. 9, 2021-06-01.
Liu D, Pang Y H, Tao B. A 3D-SPD superfine crystal bar forming method for F+P type non-quenched and tempered steel [P]. China:10809863. 9, 2021-06-01.
[22] Bengochea R, López B, Gutierrez I. Microstructural evolution during the austenite-to-ferrite transformation from deformed austenite [J]. Metallurgical and Materials Transactions A, 1998, 29 (2):417-426.
[23] Aghamohammadi H, Hosseinipour S J, Rabiee S M, et al. Texture-microstructure correlation in hot-rolled AZ31 [J]. Transactions of the Indian Institute of Metals, 2019, 72 (72): 1775-
1781.
[24] Dronhofer A, et al. The evolution of dislocationdensity during heat treatment and creep of tempered martensite ferritic steels [ J]. Acta Materialia, 2003, 51 ( 16): 4847 -4862.
[25] 莫文锋. 珠光体片间距的热力学控制及其对钢力学性能的影响[J]. 钢铁钒钛, 2021, 42 (5): 175-179.
Mo W F. Thermodynamic control of pearlite sheet spacing and its effect omechanical properties of steel [J]. Iron Steel Vanadium Titanium, 2021, 42 (5): 175-179.
[26] Dzioba I, Gajewski M, Neimitz A. Studies of fracture processes in Cr-Mo-V ferritic steel with various types of microstructures [J]. International Journal of Pressure Vessels and Piping, 2010, 87(10): 575-586.
[27] 周世同, 李昭东, 潘涛, 等. 中碳珠光体型高速车轮钢的韧化机理[J]. 钢铁, 2019, 54 (2): 75-82.
Zhou S T, Li Z D, Pan T, et al. Toughening mechanism of medium carbon pearlitic steels for high speed wheel [J]. Iron Steel,2019, 54 (2): 75-82.
|