网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于内变量的Ti2AlNb合金M-K理论的高温成形极限预测
英文标题:Prediction on high temperature forming limit for Ti2AlNb alloy M-K theory based on internal variables
作者:刘志强1 2 王东君1 2 刘钢1 3 
单位:1.哈尔滨工业大学 金属精密热加工国家级重点实验室   2. 哈尔滨工业大学 材料科学与工程学院   3.哈尔滨工业大学 流体高压成形技术研究所 
关键词:高温成形极限预测 Ti2AlNb合金 M-K理论 内变量 微观组织 
分类号:TG306
出版年,卷(期):页码:2022,47(12):240-248
摘要:

 Ti2AlNb合金在高温变形过程中,微观组织演变复杂,导致合金的力学性能和成形性能发生改变;且由于微观组织和力学性能的耦合变化,导致高温成形极限的预测更加困难。针对该问题,以Ti2AlNb合金基于内变量的本构模型和M-K理论为基础,将变形过程中的微观组织演变及其对力学性能的影响与M-K理论进行耦合,建立了Ti2AlNb合金基于内变量的M-K理论的高温成形极限预测模型,并进行了Ti2AlNb合金板材成形极限的计算。Ti2AlNb合金板材在高温成形时,随着变形温度(950~985 ℃)和应变速率(0.001~0.1 s-1)的提高,板材的成形极限提高,说明应变软化有利于提高板材的成形极限。最后,进行了变形温度为985 ℃和应变速率为0.01 s-1条件下的成形极限实验测试,并对理论计算结果进行了验证,证明了建立的高温成形极限预测模型具有良好的预测效果。

 During the high temperature deformation process of Ti2AlNb alloy, the microstructure evolution is complicated, which will lead to the change of mechanical properties and formability of alloy. Due to the coupling changes of microstructure and mechanical properties, it is more difficult to predict the forming limit at high temperature. Therefore, for this problem, the microstructure evolution during the deformation process and its influence on mechanical properties were coupled based on the M-K theory and the constitutive model of internal variables and M-K theory, the prediction model of forming limit for Ti2AlNb alloy at high temperature based on internal variables for Ti2AlNb alloy was established, and the forming limit of Ti2AlNb alloy sheet was calculated. When Ti2AlNb alloy sheet was formed at high temperature, the forming limit of sheet increased with the increasing of deformation temperature (950-985 ) and strain rate0.001-0.1 s-1. Therefore, strain softening was beneficial to improve the forming limit of sheet. Finally,the forming limit test was carried out under the conditions of the deformation temperature of 985 and the strain rate of 0.01 s-1, the theoretical calculation results were verified. Thus, the established prediction model of forming limit at high temperature has a good prediction effect.

基金项目:
航天联合基金资助项目(U1937204)
作者简介:
刘志强(1990-),男,博士研究生 E-mail:lzhq241@163.com 通信作者:刘钢(1970-),男,博士,教授 E-mail:gliu@hit.edu.cn
参考文献:

 [1]Hill R. On discontinuous plastic states, with special reference to localized necking in thin sheets[J]. Journal of the Mechanics and Physics of Solids, 1952, 1(1):19-30.


 


[2]Li X Q, Nan S, Guo G Q, et al. Prediction of forming limit curve (FLC) for Al-Li alloy 2198-T3 sheet using different yield functions [J]. Chinese Journal of Aeronautics, 2013(5):1317-1323.


 


[3]Paraianu L, Com A D S, Nicodim I P, et al. Effect of the constitutive law on the accuracy of prediction of the forming limit curves[J]. Key Engineering Materials, 2012,1665504-506:77-82.


 


[4]Paul S K. Controlling factors of forming limit curve: A review[J]. Advances in Industrial and Manufacturing Engineering, 2021,2:100033.


 


[5]Yamashita M, Nikawa M, Kuroda T. Effect of strain-rate on forming limit in biaxial stretching of aluminum sheet[J]. Procedia Manufacturing, 2018,15:877-883.


 


[6]Chu X R, Leotoing L, Guines D, et al. Temperature and strain rate influence on AA5086 forming limit curves: Experimental results and discussion on the validity of the M-K model[J]. International Journal of Mechanical Sciences, 2014,78:27-34.


 


[7]付明杰,曾元松,钱健行,等. Ti-22Al-25Nb合金扩散连接工艺及连接机制研究[J]. 稀有金属,202044(12):1233-1239.


 


Fu M J, Zeng Y S,Qian J X, et al. Diffusion bonding process and mechanism of Ti-22Al-25Nb alloy[J]. Chinese Journal of Rare Metals, 202044(12):1233-1239.


 


[8]Zhang R Q, Shao Z T, Lin J G. A review on modelling techniques for formability prediction of sheet metal forming[J]. International Journal of Lightweight Materials and Manufacture, 2018,1(3):115-125.


 


[9]Wang N, Ilinich A, Chen M H, et al. A comparison study on forming limit prediction methods for hot stamping of 7075 aluminum sheet[J]. International Journal of Mechanical Sciences, 2019,151:444-460.


 


[10]Lin J G, Mohamed M, Balint D, et al. The development of continuum damage mechanics-based theories for predicting forming limit diagrams for hot stamping applications[J]. International Journal of Damage Mechanics, 2014,23(5):684-701.


 


[11]Li F F, Fu M W, Lin J P, et al. Experimental and theoretical study on the hot forming limit of 22MnB5 steel[J]. International Journal of Advanced Manufacturing Technology, 2014,71(1-4):297-306.


 


[12]Ying L, Liu W Q, Wang D T, et al. Parameter calibration of GTN damage model and formability analysis of 22MnB5 in hot forming process[J]. Journal of Materials Engineering and Performance, 20172611):5155-5165.


 


[13]Marciniak Zdzislaw,Kuczyński Kazimierz. Limit strains in the processes of stretch-forming sheet metal[J]. International Journal of Mechanical Sciences, 1967,9(9):609-620.


 


[14]Chen J S, Zheng X Y, Liu Y S. Theoretical prediction of high strength steel 22MnB5 forming limit in high temperature based on M-K model[J]. Procedia Engineering, 2017,207:550-555.


 


[15]Gao H, Fakir O E, Wang L L, et al. Forming limit prediction for hot stamping processes featuring non-isothermal and complex loading conditions[J]. International Journal of Mechanical Sciences, 2017131-132792-810.


 


[16]Wu Y, Wang D J, Liu Z Q, et al. A unified internal state variable material model for Ti2AlNb-alloy and its applications in hot gas forming[J]. International Journal of Mechanical Sciences, 2019, 164(C): 105126.


 


[17]Shao Z T, Li N, Lin J G, et al. Formability evaluation for sheet metals under hot stamping conditions by a novel biaxial testing system and a new materials model[J]. International Journal of Mechanical Sciences, 2017,120:149-158.


 


[18]Kulas M A, Krajewski P E, Bradley J R, et al. Forming-limit diagrams for hot-forming of AA5083 aluminum sheet: Continuously cast material[J]. Journal of Materials Engineering and Performance, 2007,16(3):308-313.


 


[19]Siegert K, Jaeger S. Pneumatic bulging of magnesium AZ31 sheet metal at elevated temperatures[A]. TMS Annual Meeting and Symposium on Magnesium Technology[C].US, 2004. 

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9