网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
复杂应变路径加载下7075-T6铝合金的损伤演化
英文标题:Damage evolution on 7075-T6 aluminum alloy under complex strain path loading
作者:郑唐杰1 2  李贵1 2 3 许成1 2 方学彬1 2 
单位:1.武汉科技大学 冶金装备及其控制教育部重点试验室 2. 武汉科技大学 机械传动与制造过程  3. 武汉科技大学 精密制造研究院 
关键词:7075-T6铝合金 损伤模型 复杂应变路径 孔洞体积分数 单向拉伸 
分类号:TG335
出版年,卷(期):页码:2022,47(12):227-233
摘要:

 7075-T6高强铝合金为研究对象,探明其在复杂应变路径加载后的力学性能,设计了可调节变形量的复杂应变装配模型,并基于GTN本构模型进行了单向拉伸和复杂应变路径加载下单向拉伸的仿真模拟,研究了不同变形量对仿真试样的位移-载荷曲线和真实应力-真实应变曲线的影响,分析了fOfNfCfF4个孔洞体积分数对复杂应变路径加载下试样的真实应力-真实应变曲线的影响。结果表明:在施加复杂应变路径后,试样断裂处所受的应力减小,应变大幅减小;fOfC主要影响曲线的颈缩阶段,fN主要影响曲线的屈服阶段,而fF对曲线的影响较小。结果显示,相较于单向拉伸的仿真结果,复杂应变路径加载下的真实应力-真实应变曲线能更准确地反映汽车覆盖件在冲压生产过程中的损伤演化过程。

 For 7075-T6 high-strength aluminum alloy, the mechanical properties after loading in complex strain paths were ascertained, and complex strain assembly model with adjustable deformation was designed. Based on the GTN constitutive model, the simulations of uniaxial tension and uniaxial tension under complex strain path loading were carried out, respectively, the influences of different deformations on the displacement-load curve and true stress-true strain curve for simulated specimen were studied, and the influences of four void volume fractions of fO, fN,fC , fF on the true stress-true strain curve for specimen under complex strain path loading were analyzed. The results show that after applying complex strain paths, the stress and strain at fracture site of sample decrease greatly. fO  and fC  mainly affect the necking stage of the curve, fN  mainly affects the yield stage of the curve, while  fF has little effect on the curve. The results show that compared with the simulation results of uniaxial tension, the true stress-true strain curve under complex strain path loading is more accurate for the damage evolution process of

automotive panels during the stamping production process.

基金项目:
华中科技大学材料成形与模具技术国家重点实验室开放基金资助项目(P2020-019)
作者简介:
郑唐杰(1997-),男,硕士 E-mail:jiemao1010@163.com 通信作者:李贵(1983-),男,博士,副教授 E-mail:leegui2030@wust.edu.cn
参考文献:

 [1]李光霁, 刘新玲. 汽车轻量化技术的研究现状综述[J]. 材料科学与工艺, 2020, 28(5):47-61.


 


Li G J, Liu X L. Literature review on research and development of automotive lightweight technology[J]. Materials Science and Technology, 2020,28(5):47-61.


 


[2]洪腾蛟, 董福龙, 丁凤娟, . 铝合金在汽车轻量化领域的应用研究[J]. 热加工工艺, 2020, 49(4):1-6.


 


Hong T J, Dong F L, Ding F J, et al. Application of aluminum alloy in automotive lightweight[J]. Hot Working Technology, 2020, 49(4):1-6.


 


[3]刘辰辰, 陈亚军, 李柯, . 7075航空铝合金原位腐蚀-多轴疲劳行为分析[J]. 中国机械工程, 2019, 30(5):615-621.


 


Liu C C, Chen Y J, Li K, et al. Analysis for in-situ corrosion-multiaxial fatigue behaviors of 7075 aerospace aluminum alloys[J]. China Mechanical Engineering, 2019, 30(5):615-621.


 


[4]王大鹏,李晓峰. 某汽车内板冲压成形工艺优化及回弹补偿[J]. 塑性工程学报,2022,29(9):40-46.


 


Wang D P, Li X F. Stamping process optimization and springback compensation of an automobile inner plate[J]. Journal of Plasticity Engineering, 2022,29(9):40-46.


 


[5]徐涛涛,孔垂品,李俊杰,. 汽车覆盖件冲压工艺分析系统[J]. 塑性工程学报,2020,27(5):74-82.


 


Xu T T, Kong C P, Li J J, et al. Process analysis system for stamping of automobile panel[J]. Journal of Plasticity Engineering, 2020,27(5):74-82.


 


[6]Majidi O, Jahazi M, Bombardier N. Prediction of material behavior during biaxial stretching of superplastic 5083 aluminum alloy[J]. The International Journal of Advanced Manufacturing Technology,2019,102(5/8):2357-2366.


 


[7]Qin J S, Bjorn H, Odd S H. Experimental characterization and modeling of aluminum alloy AA3103 for complex single and double strain-path changes[J]. International Journal of Plasticity,2019,112:158-171.


 


[8]Li Z F, Lu S H, Yang W K, et al. Study on the ductile fracture rule of 6061-T6 aluminum alloy sheet under different strain conditions[J]. Transactions of the Indian Institute of Metals,2019,72(10):2721-2728.


 


[9]Rahmaan T, Noder J, Abedini A, et al. Anisotropic plasticity characterization of 6000- and 7000-series aluminum sheet alloys at various strain rates[J]. International Journal of Impact Engineering, 2020, 135(C):103390.1-103390.20.


 


[10]Liao J, Jose A S, Augusto B L, et al. Mechanical microstructural behaviour and modelling of dual phase steels under complex deformation paths[J]. International Journal of Plasticity,2017,93269-290.


 


[11]韩非,操召兵.复杂应变路径下QP980超高强钢的非弹性回复行为[J],清华大学学报:自然科学版,201858(10)921-928.


 


Han F, Cao Z B. Inelastic of Q&P980 ultra high strength steel with a complicated deformation path[J]. Journal of Tsinghua University:Science and Technology, 2018,58(10):921-928.


 


[12]Needleman A, Tvergaard V. An analysis of ductile rupture in notched bars[J]. Journal of the Mechanics and Physics of Solids, 1984, 32(6): 461-490.


 


[13]Tvergaard V, Needleman A. Analysis of the cup-cone fracture in a round tensile bar[J]. Acta Metallurgica, 1984, 32(1): 157-169.


 


[14]郭建超,张立研,曹艳艳,. 基于GTN损伤模型的双相钢激光拼焊板冲压成形失效行为研究[J]. 热加工工艺,2020,49(17):86-89,94.


 


Guo J C, Zhang L Y, Cao Y Y, et al. Research on failure behavior of stamping forming of dual-phase steel laser tailor welded blanks based on GTN Damage model[J]. Hot Working Technology,2020,49(17):86-89,94.


 


[15]盈亮,刘文权,王丹彤,. 7075-T6铝合金温成形损伤演化试验与仿真[J]. 中国有色金属学报,2016,26(7):1383-1390.


 


Ying L, Liu W Q, Wang D T, et al. Experimental and simulation of damage evolution behavior for 7075-T6 aluminum alloy in warm forming[J]. The Chinese Journal of Nonferrous Metals, 2016,26(7):1383-1390.


 


[16]柯俊逸. 复杂加载条件下金属板料的成形极限研究[D]. 武汉: 华中科技大学,2018.


 


Ke J Y.A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Philosophy in Engineering[D].Wuhan Huazhong University of Science Technology,2018.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9