网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
微尺度纤维/金属混杂层板的低约束拉伸变形性能
英文标题:Low constraint tensile deformation properties on micro scale fiber/metal hybrid laminates
作者:王耀 宋国鹏 杨超 魏强 赵丽滨 胡宁 郎利辉 
单位:河北工业大学 清华大学苏州汽车研究院(相城) 华中科技大学 北京航空航天大学 
关键词:纤维金属层板 TiGr层板 微尺度 单向拉伸 变形性能 低约束 
分类号:TB333
出版年,卷(期):页码:2022,47(10):63-71
摘要:

为了研究微尺度下纤维金属层板的变形规律,以TA1钛合金板和碳纤维增强预浸料为原材料,制备了不同类型的微尺度TiGr层板,并通过单向拉伸试验研究了TiGr层板的变形性能。通过改变制备工艺、层板结构、金属层厚度以及设置不同的加载速度,得到应力-应变曲线。对各种情况下的抗拉强度和伸长率进行对比分析,得到了试验变量对TiGr层板变形过程的影响规律,并分析了层板的断裂失效形式和断口宏观形貌。最终得出:采用低约束工艺制备,加载速度为3 mm·min-1、金属层厚度为0.04 mm情况下,TiGr层板的变形性能最好,其抗拉强度为229.45 MPa、伸长率为27.8%。 

In order to study the deformation law of fiber metal laminates at micro scale, for TA1 titanium alloy plate and carbon fiber reinforced prepreg, the different types of microscale TiGr laminates were prepared, and the deformation properties of TiGr laminates were studied by uniaxial tensile test. Then, the stress-strain curves were obtained by changing the preparation process, laminate structure and metal layer thickness and setting different loading speeds. Furthermore, the tensile strength and elongation under various conditions were compared and analyzed, and the influence law of test variables on the deformation process of microscales TiGr laminates was obtained to analyze the fracture failure forms of laminates and the macro morphology of fracture. Finally, it is concluded that the deformation performance of TiGr laminates prepared by low constraint process is the best when the loading speed is 3 mm·min-1 and the metal layer thickness is 0.04 mm, and its tensile strength is 229.45 MPa and the elongation is 27.8%.

基金项目:
国家自然科学基金资助项目 (52005153);中国博士后科学基金资助项目 (2022T150372,2021M701962);中央引导地方科技发展项目(206Z1803G);天津市“项目+团队”重点培养专项(XC202052);材料成形与模具技术国家重点实验室开放课题研究基金 (P2021-012)
作者简介:
王耀 (1986-),男,博士,副教授,E-mail:bhwy2014@126.com
参考文献:

[1]Sun J, Daliri A, Lu G, et al. Tensile failure of fibremetallaminates made of titanium and carbonfibre/epoxy laminates[J]. Materials & Design, 2019, 183:108139.

[2]Lin Y, Cheng L, Li H, et al. Interlaminar failure behavior of Glare laminates under double beam fivepointbending load[J]. Composite Structures, 2018, 201: 79-85.

[3]Kai J A, Hao W B, Jie T, et al. Mechanical analysis and progressive failure prediction for fibre metal laminates using a 3D constitutive model[J]. Composites Part A: Applied Science and Manufacturing, 124: 105490-105490.

[4]Hu Y X,Zheng X W, Wang D Y, et al. Application of laser peen forming to bend fibre metal laminates by high dynamic loading[J]. Journal of Materials Processing Technology, 2015, 226: 32-39.

[5]Mamalis D, Obande W, Koutsos V, et al. Novel thermoplastic fibremetal laminates manufactured by vacuum resin infusion: The effect of surface treatments on interfacial bondingsciencedirect[J]. Materials & Design, 2019, 162: 331-344.

[6]Vollertsen F, Hu Z, Niehoff H S, et al. State of the art in microforming and investigations into micro deep drawing[J]. Journal of Materials Processing Technology, 2004, 151(1-3): 70-79.

[7]Engel U, Eckstein R. Microformingfrom basic research to its realization[J]. Journal of Materials Processing Technology, 2002, 125-126: 35-44.

[8]Raulea L V, Goijaerts A M, Govaert L E, et al. Size effects in the processing of thin metal sheets[J]. Journal of Materials Processing Technology, 2001, 115(1): 44-48.

[9]Krishnan N, Zhong W, Lu H, et al. Microforming: Experimental investigation of the extrusion process for micropins and its numerical simulation using RKEM[J]. Journal of Manufacturing Science & Engineering, 2004, 126(4): 313-316.

[10]
刘芳, 彭林法, 来新民. 基于尺度效应的微细薄板本构模型的建立[J]. 材料科学与工艺, 2008,(1): 31-33.

Liu F, Peng L F, Lai X M. Constitutive model of micro sheet metal based on the size effect[J]. Materials Science and Technology, 2008,(1):31-33.

[11]
张玲, 吴杰锋, 丁毅. 基于尺度效应的不锈钢超薄板力学性能及断裂行为研究[J]. 热加工工艺, 2016, 45(10): 83-85.

Zhang L, Wu J F, Ding Y. Research on mechanical property and fracture behavior of stainless steel ultra thin sheet based on size effect[J]. Hot Working Technology, 2016, 45(10): 83-85.

[12]
崔保金, 童国权, 马振武. H80薄板拉伸性能的尺寸效应[J]. 材料科学与工艺, 2017, 25(2): 45-49.

Cui B J, Dong G Q, Ma Z W. Size effects on tensile properties of H80 thin sheets[J]. Materials Science and Technology, 2017, 25(2): 45-49.

[13]
彭林法, 李成锋, 来新民. 介观尺度下的微冲压工艺特点分析[J]. 塑性工程学报, 2007,14(4): 54-59.

Peng L F, Li C F, Lai X M, et al. Characteristic analysis of stamping process in Micro/Meso scale[J]. Journal of Plasticity Engineering, 2007,14(4): 54-59.

[14]Cortes P, Cantwell W J. The prediction of tensile failure in titaniumbased thermoplastic fibremetal laminates[J]. Composites Science & Technology, 2006, 66(13):2306-2316.

[15]Jin K, Chen K, Luo X, et al. Fatigue crack growth and delamination mechanisms of Ti/CFRP fibre metal laminates at high temperatures[J]. Fatigue & Fracture of Engineering Materials & Structures, 2020, 43(6):13178.

[16]
李磊, 郎利辉, 轩永波, . 基于单向拉伸的半固化GLARE层板成形性能分析[J]. 锻压技术, 2021, 46(2): 200-205.

Li L, Lang L H, Xuan Y B, et al. Analysis on forming performance of semicured GLARE laminate based on uniaxial tensile[J]. Forging & Stamping Technology, 2021, 46(2): 200-205.

[17]Wang Y, Hou Y, Liu Y, et al. Investigation of ultrasonic deformation characteristics of ultrathin miniaturized TA1 foil[J]. Materials Science and Engineering, 2020, 777: 139070-139070.

[18]Mckown S. Investigation of scaling effects in fibermetal laminates[J]. Journal of Composite Materials, 2008, 42(9):865-888.

[19]Carrillo J G, Cantwell W J. Scaling effects in the tensile behavior of fibermetal laminates[J]. Composites Science & Technology, 2007, 67(7-8):1684-1693.

[20]Hallett S R, Jiang W G, Wisnom M R. Effect of stacking sequence on openhole tensile strength of composite laminates[J]. Aiaa Journal, 2009, 47(7):1692-1699.

[21]Kashani M H, Sadighi M, Mohammadkhah M, et al. Investigation of scaling effects on fiber metal laminates under tensile and flexural loading[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials Design and Applications, 2013,229(3):189-201.

[22]HB 7736.5—2004,
复合材料预浸料物理性能试验方法第5部分:树脂含量的测定[S].

HB 7736.5—2004, Test method for physical properties of composite material prepreg—Part 5: Determination of resin content [S].

[23]HB 7736.3—2004,
复合材料预浸料物理性能试验方法第3部分:纤维面密度的测定[S].

HB 7736.3—2004, Test method for physical properties of composite material prepreg—Part 3: Determination of fiber mass per unit area [S].

[24]HB 7736.2—2004,
复合材料预浸料物理性能试验方法第2部分:面密度的测定[S].

HB 7736.2—2004, Test method for physical properties of composite material prepreg—Part 2: Determination of mass per unit area [S].

[25]HB 7736.4—2004,
复合材料预浸料物理性能试验方法第4部分:挥发份含量的测定[S].

HB 7736.4—2004, Test method for physical properties of composite material prepreg—Part 4: Determination of volatiles content [S].

[26]
姚瑶. 微尺度下纯铜箔的力学性能及弯曲回弹研究[D]. 济南:山东大学,2015.

Yao Y. Research on Mechanical Properties and Bending Springback of Pure Copper foil under Micro Scale[D]. Jinan: Shandong University, 2015.

[27]
王永贵, 梁宪珠,曹正华. 纤维金属层板及其在大型飞机上的应用[A]. 中国力学学会. 第十五届全国复合材料学术会议论文集: 下册[C]. 哈尔滨:中国力学学会, 2008.

Wang Y G, Liang X Z, Cao Z H. Fibre metal laminate and its application in large aircraft[A].The Chinese Society of Theoretical and Applied Mechanics.Proceedings of the 15th National Conference on Composites: Volume 2[C]. Haierbin: The Chinese Society of Theoretical and Applied Mechanics
2008.

[28]
郎利辉, 张闫飞, 关世伟. 基于单向拉伸的GLARE板力学性能测试[J]. 精密成形工程, 2018, 10(6): 30-33.

Lang L H, Zhang Y F, Guan S W. Test on mechanical properties of GLARE plate based on uniaxial tensile[J]. Journal of Netshape Forming Engineering, 2018, 10(6):30-33.

[29]Hancox N L. Engineering mechanics of composite materials[J]. Materials and Design, 1996, 17(2): 114-114.

[30]Gau J T, Principe C, Wang J. An experimental study on size effects on flow stress and formability of aluminm and brass for microforming[J]. Journal of Materials Processing Technology, 2007, 184(1-3):42-46.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9