网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
汽车前轴成形模具磨损行为的实验与数值模拟研究
英文标题:Experimental and numerical simulation study on wear behavior of forming die for automobile front axle beam
作者:杨子帅 吴博雅 李奇颖 黎军顽 
单位:1.上海大学 材料科学与工程学院 2.省部共建高品质特殊钢冶金与制备国家重点实验室 
关键词:热锻模具钢 汽车前轴 辊锻 模具磨损 Archard磨损模型 
分类号:TG142.1
出版年,卷(期):页码:2022,47(9):188-195
摘要:

 为了提高模具的耐磨性和服役寿命,并为模具选材优化提供参考,研究了5CrNiMoAISI H13SDDM3种热锻模具钢的高温磨损特性,分析其潜在的磨损失效机理。基于高温摩擦磨损实验,建立Archard磨损模型, 采用有限元方法研究了模具预热温度、锻造速率和模具材料等关键因素对汽车前轴辊锻模具磨损的影响。结果表明:300~500 ℃时SDDM钢主要发生磨粒磨损、黏着磨损和氧化磨损;相对于5CrNiMo钢和AISI H13钢,在相同条件下SDDM钢的磨损失重和磨损率最小,具有最佳的高温耐磨性。当模具选材为SDDM钢、预热温度为150 ℃、锻造速率为15 r·min-1时,模具磨损水平最低,最大磨损深度由5.7×10-5 mm下降至2.93×10-5 mm,磨损幅度降低约48.6%

 In order to improve the wear resistance and service life of die, and provide reference for the optimization of die material selection, the high temperature friction characteristic for three types of hot forging die steels including 5CrNiMo, AISI H13 and SDDM were researched, meanwhile the potential wear failure mechanism was analyzed. According to the high temperature friction wear experiment, the Archard wear model was constructed, then the influences of the key foctors such as die pre-heating temperature, forging rate and die material on the die wear of automobile front axle beam roll-forging was studied by finite element method. The results show that the SDDM steel mainly suffers from abrasive wear, adhesive wear and oxidation wear at 300-500 ; compared with 5CrNiMo steel and AISI H13 steel, the wear weight loss and wear rate of SDDM steel at the same conditions are the least, which indicates that SDDM steel has the best high temperature wear resistance. When the die material is SDDM steel, the pre-heating temperature is 150 and the forging rate is 15 r·min-1, the die wear reaches the lowest level and the maximum wear depth of die is reduced by 48.6%, namely decreasing from 5.7×10-5 mm to 2.93×10-5 mm.

基金项目:
国家重点研发计划(2016YFB0300400, 2016YFB0300404)
作者简介:
杨子帅(1996-),男,硕士 E-mail:zsyang391@163.com 通信作者:黎军顽(1981-),男,博士,教授 E-mail:lijunwan@shu.edu.cn
参考文献:

 [1]Zhuang W H, Hua L, Wang X W, et al. Numerical and experimental investigation of roll-forging of automotive front axle beam[J]. International Journal of Advanced Manufacturing Technology, 2015, 79(9-12): 1761-1777.


 


[2]Sun W, Chen L, Zhang T L, et al. Preform optimization and microstructure analysis on hot precision forging process of a half axle flange[J]. International Journal of Advanced Manufacturing Technology, 2018, 95(5-8): 2157-2167.


 


[3]Lange K, Cser L, Geiger M, et al. Tool life and tool quality in bulk metal forming[J]. CIRP Annals-Manufacturing Technology, 1992, 41(2): 667-675.


 


[4]刘鑫. 高强钢热成形过程模具磨损的数值模拟研究[D]. 长春: 吉林大学, 2016.


 


Liu X. Numerical Simulation Research on Die Wear During the Thermal Process of High Strength Steel[D]. Changchun: Jilin University, 2016.


 


[5]Yanagida A, Kurihara T, Azushima A. Development of tribo-simulator for hot stamping[J]. Materials Processing Technology, 2010, 210(3): 456-460.


 


[6]Yanagida A, Azushima A. Evaluation of coefficients of friction in hot stamping by hot flat drawing test[J]. CIRP Annals-Manufacturing Technology, 2009, 58(1): 247-250.


 


[7]Gronostajski Z, Kaszuba M, Polak S, et al. The failure mechanisms of hot forging dies[J]. Materials Science and Engineering: A, 2016, 657(1): 147-160.


 


[8]Archard J F. Contact and rubbing of flat surfaces[J]. Journal of Applied Physics, 1953, 24(8): 981-988.


 


[9]Painter B, Shivpuri R, Altan T. Prediction of die wear during hot extrusion of engine valves[J]. Journal of Materials Processing Technology, 1996, 59(1): 132-143.


 


[10]施渊吉, 黎军顽, 吴晓春, . 汽车法兰盘热锻模具磨损失效的实验分析和数值研究[J]. 摩擦学学报, 2016, 36(2): 216-225.


 


Shi Y J, Li J W, Wu X C, et al. Experimental and numerical study on the wear failure of hot forging die of automobile flange[J]. Tribology, 2016, 36(2): 216-225.


 


[11]Jia Z, Zhou J, Ji J, et al. The effect of temperature condition on material deformation and die wear[J]. Journal of Materials Engineering and Performance, 2013, 22(7): 2019-2028.


 


[12]Lee R S, Jou J L. Application of numerical simulation for wear analysis of warm forging die[J]. Journal of Materials Processing Technology, 2003, 140(1): 43-48.


 


[13]宋宇, 张丰收, 皇涛, . 基于高温磨损的H13热作模具钢磨损规律和模型研究[J]. 塑性工程学报, 2018, 25(4): 187-193.


 


Song Y, Zhang F S, Huang T, et al. Study on wear law and model of H13 hot working die steel based on high-temperature wear[J]. Journal of Plasticity Engineering, 2018, 25(4): 187-193.


 


[14]王文浩. 黄铜齿环精密锻造成形及模具磨损研究[D]. 重庆: 重庆大学, 2013.


 


Wang W H. Study on Precision Forging Process and Die Wear of Brass Synchronizer Ring[D]. Chongqing: Chongqing University, 2013.


 


[15]Qiao X Y, Chen A G, Nie X, et al. A study on die wear prediction for automobile panels stamping based on dynamic model[J]. International Journal of Advanced Manufacturing Technology, 2018, 97(5-8): 1823-1833.


 


[16]Luo S Y, Zhu D H, Hua L, et al. Numerical analysis of die wear characteristics in hot forging of titanium alloy turbine blade[J]. International Journal of Mechanical Sciences, 2017, 123: 160-170.


 


[17]Kim Y J, Choi C H. A study on life estimation of hot forging die[J]. International Journal of Precision Engineering and Manufacturing, 2009, 10(3): 105-113.


 


[18]孙晓明, 李树林, 杜晓钟, . 辗钢整体车轮辐板压弯冲孔数值模拟[J]. 塑性工程学报, 2020, 27(6): 23-29.


 


Sun X M, Li S L, Du X Z, et al. Numerical simulation of web bending and punching of rolled solid wheels[J]. Journal of Plasticity Engineering, 2020, 27(6): 23-29.


 


[19]施渊吉. 热锻模用材DM钢高温服役行为及机理研究[D]. 上海: 上海大学, 2018.


 


Shi Y J. Study on High Temperature Service Behavior and Its Mechanism of DM Hot Forging Die Steel[D]. Shanghai: Shanghai University, 2018.


 


[20]Zhou Q C, Wu X C, Min N. Effect of Si addition on kinetics of martensitic hot-work die steel during tempering[J]. Metals and Materials International, 2011, 17(4): 547-552.


 


[21]Zhou Q C, Wu X C, Shi N N, et al. Microstructure evolution and kinetic analysis of DM hot-work die steels during tempering[J]. Materials Science and Engineering:A, 2011, 528(18): 5696-5700.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9