网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
纤维增强金属层板成形固化一体化工艺
英文标题:Integration process on forming and curing of fiber-reinforced metal laminates
作者:张弛烨 郎利辉 闫东东 郭庆磊 赵梦娇 李磊 
单位:北京航空航天大学 航空工业成都飞机工业(集团)有限责任公司 中国人民解放军93175部队 
关键词:纤维增强金属层板 成形固化一体化工艺 成形速度 成形温度 成形质量 
分类号:TB333
出版年,卷(期):页码:2022,47(7):59-67
摘要:

 针对传统成形方式成形纤维增强金属层板后出现的缺陷,基于充液成形技术,提出了纤维增强金属层板成形固化一体化技术。通过设计相关实验探究成形固化一体化技术中加载外力和成形温度参数对成形质量的影响,期望成形出质量较高的盒形件,同时分析了层板各层变形不一致的现象和层间树脂性质之间的关系。结果表明:降低成形速度、采用阶梯动态的外力加载方式可以提高层板的成形性能。通过对整个流程的工艺温度进行分段控制得出,成形温度控制在60 ℃、固化温度控制在120 ℃的条件下,可减少树脂的溢出,进而得到较好的层间质量。通过对纤维增强金属层板盒形件的成形特征和层间协调变形规律的研究,对成形工艺进行了调整,最终获得了质量良好的零件。结果表明,成形固化一体化工艺可以提高纤维增强金属层板的成形性能和表面质量。

 For the defects in fiber-reinforced metal laminates (FMLs) formed by traditional forming methods, the integration technology of forming and curing for FMLs was proposed based on hydroforming technology. Then, the influence of external force and forming temperature parameters on the forming quality in the integration technology of forming and curing were explored by the design of relevant experiments in order to form the box-shaped part with high quality, and the relationship between the deformation inconsistency for each layer of the laminate and the properties of resin between layers was analyzed at the same time. The results show that the formability of the laminate is improved by reducing forming speed and adopting the step dynamic external force loading method. By controlling the process temperature of the whole process in stages, under the condition of the forming temperature of 60 ℃ and the curing temperature of 120 ℃, the overflow of resin is reduced, and the better interlayer quality is obtained. By researching on the forming characteristics of FMLs box-shaped part and the coordinated deformation laws between layers, the forming process was adjusted, and the finally parts with good quality were obtained. The results show that the integration process of forming and curing can enhance the formability and surface quality of FMLs.

 
基金项目:
四川省科技计划项目(2019YFSY0034)
作者简介:
作者简介:张弛烨(1996-),男,硕士研究生 E-mail:603423955@qq.com 通信作者:郎利辉(1970-2022),男,博士,教授 E-mail:lang@buaa.edu.cn
参考文献:

 [1]Asundi A, Choi A. Fiber metal laminates: An advanced material for future aircraft[J]. Journal of Materials Processing Technology, 1997, 63(1):384-394.


[2]吴志恩. 纤维金属层板在飞机制造中的应用及工艺性分析[J]. 航空制造技术, 2013, 421(Z1):137-139. 

Wu Z E. Application and property analysis of fiber-metal laminate for aircraft manufacturing[J]. Aeronautical Manufacturing Technology, 2013, 421(Z1):137-139.

[3]Takamatsu T, Shimokawa T, Matsumura T, et al. Evaluation of fatigue crack growth behavior of GLARE3 fiber/metal laminates using a compliance method[J]. Engineering Fracture Mechanics, 2003, 70(18):2603-2616.

[4]胡玉冰. Ti/CF/PMR聚酰亚胺超混杂层板制备及性能研究[D]. 南京:南京航空航天大学, 2017.

Hu Y B. Preparation and Properties of Titanium/Carbon Fiber/PMR Polyimide Laminates[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017.

[5]Zafar R, Lang L, Zhang R. Experimental and numerical evaluation of multilayer sheet forming process parameters for light weight structures using innovative methodology[J]. International Journal of Material Forming, 2016, 9(1):35-47.

[6]Sherkatghanad E, Lang L, Liu S, et al. An innovative approach to mass production of fiber metal laminate sheets[J]. Materials and Manufacturing Processes, 2018, 33(5):552-563.

[7]Liu S C, Lang L H, Guan S W. An investigation into the formability and processes of GLARE materials using hydro-bulging test[J]. International Journal of Precision Engineering and Manufacturing, 2019, 20(1):121-128.

[8]Zhang S H, Danckert J. Development of hydro-mechanical deep drawing[J]. Journal of Materials Processing Technology, 1998, 83(1):14-25.

[9]绳斯佳, 郎利辉, 关世伟, 等. 考虑层间内聚力的纤维增强金属层板成形工艺优化[J]. 塑性工程学报, 2020, 27(11):59-64.

Sheng S J, Lang L H, Guan S W, et al. Forming process optimization of fiber metal laminates considering interlaminar viscous cohesion[J]. Journal of Plasticity Engineering, 2020, 27(11):59-64.

[10]时圣革, 王明涛, 白雪飘, 等. 大尺寸弹丸喷丸成形7B50铝合金材料的变形规律[J]. 锻压技术,2021,46(3):96-100.

Shi S G, Wang M T, Bai X P, et al. Deformation law of 7B50 aluminum alloy in shot peening for large size projictiles[J]. Forging & Stamping Technology, 2021, 46(3):96-100.

[11]Zhang S H, Lang L H, Kang D C, et al. Hydromechanical deep-drawing of aluminum parabolic workpieces-experiments and numerical simulation [J]. International Journal of Machine Tools & Manufacture, 2000, 40(10): 1479-1492.

[12]Khandeparkar T, Liewald M. Hydromechanical deep drawing of cups with stepped geometries[J]. Journal of Materials Processing Technology, 2008, 202(1):246-254.

[13]Parsa M H, Darbandi P. Experimental and numerical analyses of sheet hydroforming process for production of an automobile body part[J]. Journal of Materials Processing Technology, 2008, 198:381-390.

[14]Gresham J, Cantwell W, Cardew-Hall M J, et al. Drawing behaviour of metal-composite sandwich structures[J]. Composite Structures, 2006, 75:305-312.

[15]Rajabi A, Kadkhodayan M, Ghanei S. An investigation into the flexural and drawing behaviors of GFRP-based fiber-metal laminate[J]. Mechanics of Advanced Materials and Structures, 2018, 25(10): 805-812.

[16]Bernd-Arno B, Sven H, Nenad G, et al. Forming and joining of carbon-fiber-reinforced thermoplastics and sheet metal in one step[J]. Procedia Engineering, 2017, 183: 227-232. 

[17]郎利辉, 李磊. 一种基于充液成形的纤维金属层板制备成形一体化工艺 [P]. 中国: CN110871578A, 2020-03-10.

Lang L H, Li L. An integrated process for preparing and forming fiber metal laminates based on hydroforming[P]. China: CN110871578A, 2020-03-10.

[18]Blala H, Lang L, Li L, et al. Deep drawing of fiber metal laminates using an innovative material design and manufacturing process[J]. Composites Communications, 2021, 23(14):100590.

[19]Li L, Lang L H, Blala Hamza, et al. The influence of different compositions of fiber metal laminates on the fracture in the semi-solidified stamping forming[J]. International Journal of Damage Mechanics, 2020,105678952095447.

[20]Kardos J L,  M P, Dave R. Void Growth and Resin Transport During Processing of Thermosetting-Matrix Composites[M]. Berlin: Springer Berlin Heidelberg, 1980.

[21]Kardos J L, Dudukovic M P, McKague E L, et al. Void formation and transport during composite laminate processing: an initial model framework[J]. ASTM Spec. Tech. Publ.,1983, 797:96.

[22]R. S. 戴夫, A. C. 卢斯, 方征平. 高分子复合材料加工工程[M]. 北京: 化学工业出版社, 2004.

Dave R S, Loos A C,Fang Z P. Processing of Composites[M]. Beijing: Chemical Industry Press, 2004.

[23]朱洪艳. 孔隙对碳/环氧复合材料层压板性能的影响与评价研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.

Zhu H Y. Research on Effect and Evaluation of Voids on Properties of Carbon/Epoxy Composite Laminates[D]. Harbin: Harbin Institute of Technology, 2010.

[24]ASTM E8/E8M—16a,Standard test methods for tension testing of metallic materials[S].
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管 北京机电研究所有限公司 中国机械工程学会塑性工程分会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9