网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
多向锻造和退火处理对锡青铜合金力学性能的影响
英文标题:Influence of multi-directional forging and annealing on mechanical properties for tin bronze alloy
作者:牛成麟 雷志新 韦春华 严伟林 
单位:广西大学 
关键词:锡青铜合金 多向锻造 退火 强塑积 晶粒细化 
分类号:TG319;TG166.2
出版年,卷(期):页码:2022,47(7):9-12
摘要:

 为探索强塑性匹配良好的锡青铜合金的制造方法,制备了粗晶、多向锻造、多向锻造及退火3种锡青铜合金试样,采用金相显微观察、显微硬度测试、单向拉伸试验、扫描电子显微镜形貌观察等手段研究了3种试样的金相组织、硬度、拉伸性能和拉伸断口形貌。结果发现,粗晶锡青铜合金经过多向锻造后,晶粒明显细化,经过后续退火处理后,晶粒轻微长大。多向锻造及退火锡青铜合金试样的硬度、抗拉强度、伸长率均介于其余两种试样之间,其强塑积分别为粗晶锡青铜合金试样和多向锻造锡青铜合金试样的114%和195%,拉伸断口呈韧性断裂特征。结果表明,采用多向锻造及退火工艺可获得良好强塑性匹配的锡青铜合金。

 

 In order to explore the manufacturing method of tin bronze alloy with good strength and plasticity, three kinds of tin bronze alloy samples of coarse grain, multi-directional forging and multi-directional forging and annealing were prepared, and their microstructures, hardnesses, tensile properties and tensile fracture morphologies were tested by means of metallographic observation, microhardness test, unidirectional tensile test and scanning electron microscope morphology observation. The results show that the grains of coarse grain tin bronze alloy are obviously refined after multi-directional forging, and the grains grow slightly after the subsequent annealing treatment. The hardness, tensile strength and elongation of tin bronze alloy samples by multi-directional forging and annealing are between those of the other two samples. However, their products of strength and elongation are about 114% and 195% of the coarse grain and multi-directional forging tin bronze alloy samples, respectively, and the tensile fracture morphologies show ductile fracture characteristics. Thus, the process of multi-directional forging and subsequent annealing process can produce the tin bronze alloy with good strength and plasticity.

 
基金项目:
国家自然科学基金资助项目(51561003)
作者简介:
作者简介:牛成麟(1997-),男,硕士研究生 E-mail:1316606850@qq.com 通信作者:韦春华(1984-),男,博士,讲师 E-mail:weichunhua@gxu.edu.cn
参考文献:

 [1]Wang J L, Shi Q N, Qian T C, et al. Recrystallized microstructural evolution of UFG copper prepared by asymmetrical accumulative rolling-bonding process [J]. Transactions of Nonferrous Metals Society of China, 2010, 20(4): 559-563.


[2]Popov V V, Popova E N, Stolbovsky A V, et al. Evolution of the structure of Cu-1%Sn bronze under high pressure torsion and subsequent annealing [J]. Physics of Metals and Metallography, 2018, 119(4): 358-367.

[3]Gadallah E A, Ghanem M A, Abd El-Hamid M, et al. Effect of tin content and ECAP passes on the mechanical properties of Cu/Sn alloys [J]. American Journal of Science and Technology, 2014, 1(2): 60-68.

[4]Gupta R, Srivastava S, Kumar N K, et al. High leaded tin bronze processing during multi-directional forging: Effect on microstructure and mechanical properties [J]. Materials Science and Engineering: A, 2016, 654: 282-291.

[5]Valiev R Z, Islamgaliev R K, Alexandrov I V. Bulk nanostructured materials from severe plastic deformation[J]. Progress in Materials Science, 2000, 45(2): 103-189.

[6]陆惠生. ZQSn10-1锡磷青铜的锻造[J]. 锻压机械, 1981,(1): 32.

Lu H S. Forging of ZQSn10-1 tin-phosphor bronze [J]. Metalforming Machinery, 1981,(1): 32.

[7]杨秀龙. 几种锡青铜的锻造工艺探讨[J]. 航天工艺, 1992,(2): 9-11.

Yang X L. Discussion on forging process of several tin bronzes [J]. Aerospace Manufacturing Technology, 1992,(2): 9-11.

[8]Popov V V, Stolbovsky A V, Popova E N, et al. Evolution of the structure of tin bronze under dynamic channel-angular pressing [J]. Physics of Metals and Metallography, 2017, 118(9): 864-871.

[9]Hui J, Feng Z X, Wang P, et al. Microstructural evolution analysis of grains and tensile properties of tin bronze in hot extrusion at different temperatures [J]. Materials at High Temperatures, 2019, 36(1): 68-75.

[10]Mahajan S, Pande C S, Imam M A, et al. Formation of annealing twins in F.C.C. crystals [J]. Acta Materialia, 1997, 45(6): 2633-2638.

[11]Li Y S, Tao N R, Lu K. Microstructural evolution and nanostructure formation in copper during dynamic plastic deformation at cryogenic temperatures [J]. Acta Materialia, 2008, 56(2): 230-241.

[12]Liu G, Gu J, Ni S, et al. Microstructural evolution of Cu-Al alloys subjected to multi-axial compression [J]. Materials Characterization, 2015, 103: 107-119.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9