网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
多向强应变和时效处理对Al-Zn-Mg-Cu合金摩擦磨损 性能的影响
英文标题:Influence of multi-directional strong strain and aging treatment on frictional wear properties for Al-Zn-Mg-Cu alloy
作者:曹艳艳 严伟林 
单位:广西大学 资源环境与材料学院 广西有色金属及特色材料加工重点实验室 
关键词:Al-Zn-Mg-Cu合金 多向锻造 显微组织 力学性能 耐磨性 
分类号:TG319;TG166.3
出版年,卷(期):页码:2022,47(6):251-256
摘要:

 为探明多向强应变和时效处理对AlZnMgCu合金的显微组织、力学性能和摩擦磨损性能的影响,以多向锻造和时效处理工艺加工AlZnMgCu合金,对其显微组织进行了表征,并对其力学性能和摩擦磨损性能进行了测试。研究结果表明:经多向锻造加工后,AlZnMgCu合金的强度和硬度提高,但伸长率和耐磨性却大幅度下降。锻造合金再经120 × 1320 min时效处理后,强度和硬度进一步提高,伸长率得到明显改善,耐磨性增强。AlZnMgCu合金的抗拉强度、硬度和伸长率分别达到644 MPa210 HV14.9%,耐磨性较挤压T6态提高了68.3%。由于高的硬度和加工硬化使耐磨性增强,并且晶界析出相的不连续分布降低了晶界处的应力集中,从而也改善了AlZnMgCu合金的耐磨性。

 

 In order to explore the influences of multi-directional strong strain and aging treatment on microstructure, mechanical properties and friction and wear properties of AlZnMgCu alloy, Al-Zn-Mg-Cu alloy was processed by multi-directional forging and aging process, its microstructure was characterized, and its mechanical properties and friction and wear properties were tested. The results shows that the strength and hardness of AlZnMgCu alloy are increased by multi-directional forging, but its elongation and wear resistance are substantially decreased. After aging treatment for the forged alloy at 120 for 1320 min, the strength and hardness of AlZnMgCu alloy are further increased, the elongation is significantly improved, and the wear resistance is enhanced. The tensile strength, hardness and elongation of AlZnMgCu are 644 MPa, 210 HV and 14.9%, respectively. The wear resistance is improved by 68.3% compared with the extruded T6 state due to the high hardness and high work hardening. Furthermore, due to the discontinuous distribution of grain boundary precipitates, the stress concentration at grain boundary is reduced, and the wear resistance of AlZnMgCu alloy is also improved.

基金项目:
国家自然科学基金资助项目(51561003)
作者简介:
曹艳艳(1992-),女,硕士研究生 E-mail:13783584696m@sina.cn 通信作者:严伟林(1962-),男,博士,教授 E-mail:yanwlin@gxu.edu.cn
参考文献:

 [1]ElAmoush A S. Intergranular corrosion behavior of the 7075T6 aluminum alloy under different annealing conditions [J]. Materials Chemistry and Physics, 2001, 126 (3): 607-613.


 


[2]Liu J, Cheng Y S, Chan S W N, et al. Microstructure and mechanical properties of 7075 aluminum alloy during complex thixoextrusion [J]. Transactions of Nonferrous Metals Society of China, 2020, 30 (12): 3173-3182.


 


[3]李周兵, 沈健, 闫亮明, . 应变速率对7055铝合金显微组织和力学性能的影响 [J]. 稀有金属, 201034 (5): 643-647.


 


Li Z B, Shen J, Yan L M, et al. Influence of hot process strain rate on microstructures and tensile properties of 7055 aluminum alloy[J]. Chinese Journal of Rare Metals, 201034 (5): 643-647.


 


[4]吴懿萍, 何臻毅, 周志纲, . 非等温回归再时效7050铝合金组织与力学性能的影响 [J]. 材料导报, 2019, 33 (Z2): 394-397.


 


Wu Y P, He Z Y, Zhou Z G, et al. Effect of nonisothermal retrogression and reageing treatments on the microstructure and mechanical properties of 7050 alloy [J]. Materials Reports, 2019, 33 (Z2): 394-397.


 


[5]Williams J C, Starke Jr E A. Progress in structural materials for aerospace systems [J]. Acta Materialia, 2003, 51 (19): 5775-5799.


 


[6]Zou Y, Wu X D, Tang S B, et al. Investigation on microstructure and mechanical properties of AlZnMgCu alloys with various Zn/Mg ratios [J]. Journal of Materials Science and Technology, 2021, 85: 106-117.


 


[7]Valiev R Z, Langdon T G. Principles of equalchannel angular pressing as a processing tool for grain refinement [J]. Progress in Materials Science, 2006, 51 (7): 881-981.


 


[8]薛克敏, 王晓溪, 李萍. 超细晶材料制备新工艺-挤扭 [J]. 塑性工程学报, 2009, 16 (5): 130-136.


 


Xue K M, Wang X X, Li P. A new technique for preparing bulk ultrafinegrained materials through twist extrusion [J]. Journal of Plasticity Engineering, 2009, 16 (5): 130-136.


 


[9]Gupta R, Srivastava S, Kumar N K, et al. High leaded tin bronze processing during multidirectional forging: Effect on microstructure and mechanical properties [J]. Materials Science & Engineering A, 2016, 654: 282-291.


 


[10]Estrin Y, Vinogradov A. Extreme grain refinement by severe plastic deformation: A wealth of challenging science [J]. Acta Materialia, 2013, 61 (2): 782-817.


 


[11]马慧娟, 顾艳红, 车俊铁, . 表面纳米化对2024铝合金耐磨性能的影响 [J]. 材料保护, 2016, 49 (7): 56-59.


 


Ma H J, Gu Y H, Che J T, et al. Effect of surface nano crystallization on wear resistance of 2024 aluminum alloy[J]. Journal of Material Protection, 2016, 49 (7): 56-59.


 


[12]Wen L, Yuan Y, Wang Y M, et al. Effect of nanocrystalline surface and ironcontaining layer obtained by SMAT on tribological properties of 2024 Al alloy [J]. Rare Metal Materials and Engineering, 2015, 44 (6): 1320-1325.


 


[13]Efe Y, Karademir I, Husem F, et al. Enhancement in microstructural and mechanical performance of AA7075 aluminum alloy via severe shot peening and ultrasonic nanocrystal surface modification [J]. Applied Surface Science, 2020, 528: 1-13.


 


[14]Chegini M, Shaeri M H. Effect of equal channel angular pressing on the mechanical and tribological behavior of AlZnMgCu alloy [J]. Materials Characterization, 2018, 140: 147-161.


 


[15]Chegini M, Fallahi A, Shaeri M H. Effect of equal channel angular pressing (ECAP) on wear behavior of Al7075 alloy [J]. Procedia Materials Science, 2015, 11: 95-100.


 


[16]Kima Y S, Yua H S, Shin D H. Low slidingwear resistance of ultrafinegrained Al alloys and steel having undergone severe plastic deformation [J]. International Journal of Materials Research, 2009, 100 (6): 871-874.


 


[17]Wang C T, Gao N, Wood R J K, et al. Wear behavior of an aluminum alloy processed by equalchannel angular pressing [J]. Journal of Materials Science, 2011, 46 (1): 123-130.


 


[18]王耀勉, 卫娟茹, 张聪惠, . 高能喷丸对Ti6Al4V钛合金渗碳层耐磨性的影响 [J]. 稀有金属, 2020, 44(5): 449-454.


 


Wang Y M, Wei J R, Zhang C H, et al. Effect of high energy shot peening on wear resistance of carburized layer of Ti6Al4V alloy [J]. Chinese Journal of Rare Metals, 2020, 44 (5): 449-454.


 


[19]魏燕, 王伟, 张雁南, . 表面喷丸与Fe+注入协同增强Ti13Nb13Zr合金的生物摩擦学性能 [J]. 稀有金属, 2020, 44 (1): 48-55.


 


Wei Y, Wang W, Zhang Y N, et al. Synergistic enhancement of biotribological properties of Ti13Nb13Zr alloy by surface shot peening and Fe+ implantation [J]. Chinese Journal of Rare Metals, 2020, 44 (1): 48-55.


 


[20]Li J H, Li F G, Ma X K. Effect of grain boundary characteristic on intergranular corrosion and mechanical properties of severely sheared AlZnMgCu alloy [J]. Materials Science & Engineering A, 2018, 732: 53-62.


 


[21]孙家枢. 金属的磨损 [M]. 北京: 冶金工业出版社, 1992.


 


Sun J S. Wear of Metals [M]. Beijing: Metallurgical Industry Press, 1992.


 


[22]Huang T T, Deng W J, Zhou Y J, et al. Effect of multidirectional forging and ageing on fracture toughness of AlZnMgCu alloys [J]. Materials Science and Technology, 2020, 36 (15): 1648-1654.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9