网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
汽车消声半壳模具表面摩擦特性的优化设计
英文标题:Optimization design on surface frictional characteristics for automobile muffler half-shell die
作者:蒋嘉兴 符永宏 符昊 杨杰 
单位:江苏大学 
关键词:拉延模具 区域划分 摩擦特性 厚度均匀性 摩擦敏感区域 
分类号:TG316
出版年,卷(期):页码:2022,47(5):188-194
摘要:

以汽车消声半壳模具为研究对象,采用数值模拟方法,在揭示模具表面摩擦特性对成形件厚度均匀性影响规律的基础上,对模具表面摩擦敏感区的摩擦特性进行优化设计。首先,对汽车消声半壳模具表面进行区域划分,利用ABAQUS对拉延成形过程进行数值模拟,采用单因素分析法,探究模具表面不同区域摩擦因数对工件厚度均匀性的影响,确定模具表面的摩擦敏感区域。其次,以板料厚度均匀性为优化目标,采用均匀设计法,对摩擦敏感区的摩擦特性进行了优化设计,最终获得消声半壳模具表面最优摩擦因数组合。优化后的模拟结果显示,成形件最薄处的破裂可能性降低了13.03%,成形件厚度的变化幅度降低了6.68%。为基于摩擦特性优化分布的模具表面激光微织构加工提供了设计依据。

For the automobile muffler half-shell die, on the basis of revealing the influence laws for friction characteristics of die surface on the thickness uniformity of formed parts, the frictional characteristics in the friction sensitive regions on the die surface were designed optimally by numerical simulation method, First, the automobile muffler half-shell die surface was divided into regions, and the drawing process was numerically simulated by software ABAQUS. Then, the influences of friction factors for different regions in the die surface on the thickness uniformity of workpiece were explored by single factor analysis method, and the friction sensitive regions in the die surface were determined. Furthermore, taking the sheet thickness uniformity as the optimization goal, the friction characteristics in the friction sensitive regions were designed optimally by uniform design method, and the optimal friction factor combination for the surface of the automobile muffler half-shell die was obtained. The optimized simulation results show that the fracture possibility at the thinnest part of the formed part decreases by 13.03%, and the variation rate of the formed part thickness drops by 6.68%, which provides design reference for laser microtexture processing of the die surface based on the optimized distribution of friction characteristics.

基金项目:
国家自然科学基金资助项目(51705210、51705211);江苏省博士后科研资助计划(2019K195)
作者简介:
作者简介:蒋嘉兴(1995-),男,硕士,E-mail:1020302332@qq.com;通信作者:符 昊(1988-),男,博士,助理研究员,E-mail:fh@ujs.edu.cn
参考文献:

[1]Choi J, Choi B, Heo S, et al. Numerical modeling of the thermal deformation during stamping process of an automotive body part[J]. Applied Thermal Engineering, 2018, 128:159-172.


[2]Dwivedi R, Agnihotri G. Study of deep drawing process parameters[J]. Materials Today Proceedings, 2017, 4(2):820-826.


[3]Takalkar A S, Babu M C L. A review on effect of thinning, wrinkling and spring-back on deep drawing process[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2019, 233(4):1011-1036.


[4]Li Z F, Lu S H, Zhang T, et al. A simple and low-cost lubrication method for improvement in the surface quality of incremental sheet metal forming[J]. Transactions of the Indian Institute of Metals, 2018, 71(7):1715-1719.


[5]Wang Z, Zhang Q C, Liu Y Q, et al. A robust and accurate geometric model for automated design of drawbeads in sheet metal forming[J]. Computer-Aided Design, 2017, 92:42-57.


[6]Ko D C, Cha S H, Lee S K, et al. Application of a feasible formability diagram for the effective design in stamping processes of automotive panels[J]. Materials & Design, 2015, 31(3):1262-1275.


[7]Naceur H, Guo Y Q, Batoz J L, et al. Optimization of drawbead restraining forces and drawbead design in sheet metal forming process[J]. International Journal of Mechanical Sciences, 2001, 43(10): 2407-2434.


[8]Schmid H, Hetz P, Merklein M. Failure behavior of different sheet metals after passing a drawbead[J]. Procedia Manufacturing, 2019, 34:125-132.


[9]Jansson T, Andersson A, Nilsson L. Optimization of draw-in for an automotive sheet metal part: An evaluation using surrogate models and response surfaces[J]. Journal of Materials Processing Technology, 2005, 159(3):426-434.


[10]Ingarao G, Lorenzo R D. Optimization methods for complex sheet metal stamping computer aided engineering[J]. Structural and Multidisciplinary Optimization, 2010, 42(3):459-480.


[11]Zhang Z Q, Jia X F, Wang Y J, et al. Optimization analysis of initial sheet metal contour line for high-strength boron steel in hot stamping[J]. Strength of Materials, 2016, 48(1):77-81.


[12]Yang H, Li H, Zhan M. Friction role in bending behaviors of thin-walled tube in rotary-draw-bending under small bending radii[J]. Journal of Materials Processing Technology, 2010, 210(15): 2273-2284.


[13]Leu D K. Evaluation of friction coefficient using indentation model of Brinell hardness test for sheet metal forming[J]. Journal of Mechanical Science & Technology, 2011, 25(6):1509-1517.


[14]符永宏, 杨守军,许华,.基于均匀性的模具表面复合织构[J].江苏大学学报:自然科学版,2014,35(3):343-348.


Fu Y H, Yang S J, Xu H, et al. Composite texture of mold surface based on uniformity[J]. Journal of Jiangsu University:Natural Science Edition2014, 35(3): 343-348.


[15]何梦虎, 符昊,符永宏,.复合织构模具对筒形件成形影响的数值模拟及实验研究[J].塑性工程学报,2020,27(12):58-65.


He M H, Fu H, Fu Y H, et al. Numerical simulation and experimental study on influence of composite texture die on forming of cylindrials parts[J]. Journal of Plasticity Engineering, 2020, 27(12):58-65.


[16]Hassan M A, Takakura N, Yamaguchi K. A novel technique of friction aided deep drawing using a blank-holder divided into four segments[J]. Journal of Materials Processing Technology, 2005, 139(1-3):408-413.


[17]Chen P, Liu X J, Huang M J, et al. Numerical simulation and experimental study on tribological properties of stamping die with triangular texture[J]. Tribology International, 2018, 132: 244-252.


[18]Zein H, El Sherbiny M, Abd-Rabou M, et al. Thinning and spring back prediction of sheet metal in the deep drawing process[J]. Materials & Design, 2014, 53:797-808.


[19]Kitamura K, Makino T, Nawa M, et al. Tribological effects of punch with micro-dimples in blanking under high hydrostatic pressure[J]. CIRP Annals-Manufacturing Technology, 2016, 65(1):249-252.


[20]Yang X P, Fu Y H, Ji J H, et al. Study on tribological properties of surface concave convex micro-texture on the mold steel[J]. Industrial Lubrication and Tribology, 2020,7210):1167-1171.


[21]方开泰. 均匀设计与均匀设计表[M].北京:科学出版社,1994.


Fang K T. Uniform Design and Uniform Design Table[M]. Beijing: Science Press, 1994.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9