网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
A356铝合金的高温流变行为及本构模型研究
英文标题:Study on high-temperature rheological behavior and constitutive model for A356 aluminum alloy
作者:曾胜1 常海平2 张金2 王锐2 罗文哲3 
单位:1. 中南大学 2. 中信戴卡股份有限公司 3. 中南大学 机电工程学院 
关键词:A356铝合金 热变形 本构模型 流变行为 流变应力 
分类号:TG146.2
出版年,卷(期):页码:2022,47(4):242-248
摘要:

 A356铝合金的高温流变特性和本构模型对其应力状态起着重要的作用,为铝合金流变成形过程的有限元模拟奠定了重要的基础。从A356铝合金轮毂铸造坯料上制取拉伸试样,利用Instron 3369型实验机进行等温拉伸实验,实验温度为300~375 ℃,应变速率为0.001~0.1 s-1。由此得到的真应力-真应变曲线表明,温度和应变速率等热力学条件对材料的流变应力的影响显著。基于真应力-真应变曲线,建立了基于位错密度理论的物理模型来表征不同热力学条件下的流变应力。将模型预测值与实验值进行对比,并进行误差分析。结果表明,所建立的物理模型能够较准确地预测A356铝合金的高温拉伸流变行为。

 The high-temperature rheological behaviour and the constitutive model of A356 aluminum alloy play an important role on its stress state, which lays a significant foundation for the finite element simulation of aluminum alloy during the rheological forming process. Therefore, the tensile specimens were prepared from A356 aluminum alloy wheel hub casting billet, the isothermal tensile experiments were conducted by test machine Instron 3369 at the experimental temperature of 300-375 ℃ and the strain rate of 0.001-0.1 s-1. The obtained true stress-true strain curves show that the rheological stress of material is significantly affected by thermodynamic conditions such as temperature and strain rate. Based on the true stress-true strain curve, a physical model based on dislocation density theory was established to characterize the rheological stress under different thermodynamic conditions. The predicted value of the model was compared with the experimental data, and the error analysis was carried out. The results show that the established physical model can accurately predict the high-temperature tensile rheological behaviour of A356 aluminum alloy. 

 
基金项目:
国家自然科学基金资助项目(51275533);河北省院士工作站建设专项(179A76193H)
作者简介:
作者简介:曾胜(1995-),男,硕士研究生 E-mail:zengsheng95@csu.edu.cn 通信作者:常海平(1978-),男,硕士,高级工程师 E-mail:changhaiping@dicastal.com
参考文献:

 [1]Abdulwahab M, Madugu I A, Yaro S A, et al. Effects of multiple-step thermal ageing treatment on the hardness characteristics of A356.0-type Al-Si-Mg alloy [J]. Materials & Design,2011,32(3):1159-1166.


[2]Haghdadi N, Zarei-Hanzaki A, Roostaei A A, et al. Evaluating the mechanical properties of a thermomechanically processed unmodified A356 Al alloy employing shear punch testing method [J]. Materials & Design,2013,43:419-425.

[3]黄涛, 郭亚明, 郑宏伟,等. 薄壁内外齿杯形件多轮行星旋压成形[J]. 锻压技术, 2020, 45(4):126-133.

Huang T,Guo Y M,Zheng H W,et al.Multi-wheel planetary spinning of thin-wall cup-shaped parts with internal and external teeth [J]. Forging & Stamping Technology, 2020, 45(4):126-133.

[4]尹小燕, 刘兴凯, 丁宏翔,等. HNi55-7-4-2合金高温本构模型修正及变形激活能演化规律[J]. 锻压技术, 2021, 46(7):221-228.

Yin X Y,Liu X K,Ding H X,et al. High temperature constitutive model modification and evolution law of deformation activation energy for HNi55-7-4-2 alloy [J]. Forging & Stamping Technology, 2021, 46(7):221-228.

[5]Babu B, Lindgren L E. Dislocation density based model for plastic deformation and globularization of Ti-6Al-4V [J]. International Journal of Plasticity,2013,50(50):94-108.

[6]Fan X G, Yang H. Internal-state-variable based self-consistent constitutive modeling for hot working of two-phase titanium alloys coupling microstructure evolution [J]. International Journal of Plasticity,2011,27(11):1833-1852.

[7]Kocks U F, Mecking H. Physics and phenomenology of strain hardening: the FCC case [J]. Progress in Materials Science,2003,48(3):171-273.

[8]Liang H Q, Nan Y, Ning Y Q, et al. Correlation between strain-rate sensitivity and dynamic softening behavior during hot processing [J]. Journal of Alloys & Compounds,2015,632:478-485.

[9]GB/T 4338—2006, 金属材料高温拉伸试验方法[S].

GB/T 4338—2006, Metallic Materials—Tensile testing at elevated temperature[S].

[10]黄光杰, 钱宝华,游红.45钢高温拉伸峰值应力和变形储能与Z参数的关系函数研究[J].材料工程,2007,(12):21-25.

Huang G J,Qian B H,You H. Functions correlating tensile peak stress and deformation stored energy of 45 steel at elevated temperature with Zener-Hollomon parameter [J]. Journal of Materials Engineering, 2007,(12):21-25.

[11]Bridgman P W. Studies in Large Plastic Flow and Fracture: with Special Emphasis on the Effects of Hydrostatic Pressure [D]. Cambridge:Harvard University,1964.

[12]Roy G L, Embury J D, Edwards G, et al. A model of ductile fracture based on the nucleation and growth of voids [J].Acta Metallurgica,1981,29(8):1509-1522.

[13]Zhang Z L, Hauge M, Odegard J, et al. Determining material true stress-strain curve from tensile specimens with rectangular cross-section [J]. International Journal of Solids & Structures,1999,36(23):3497-3516.

[14]饶国举, 李新和, 孙晓冬, 等. A356.2铝合金高温拉伸本构行为研究 [J]. 塑性工程学报, 2018, 25(3): 174-180.

Rao G J, Li X H,Sun X D,et al. Study on tensile constitutive behavior of A356.2 aluminum alloy at elevated temperature [J]. Journal of Plasticity Engineering, 2018, 25(3): 174-180.

[15]Mecking H, Kocks U F, Hartig C. Taylor factors in materials with many deformation modes [J]. Scripta Materialia, 1996, 35(4): 465-471.

[16]Lindgren L E, Domkin K, Hansson S. Dislocations, vacancies and solute diffusion in physical based plasticity model for AISI 316L [J]. Mechanics of Materials, 2008, 40(11): 907-919.

[17]Bergstrm Y. A dislocation model for the stress-strain behaviour of polycrystalline α-Fe with special emphasis on the variation of the densities of mobile and immobile dislocations [J]. Materials Science & Engineering,1970,5(4):193-200.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9