网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
带侧枝复杂铝合金构件包络成形工艺分析与金属流线模拟
英文标题:Enveloping forming process analysis and metal streamlines simulation on aluminum alloy complex components with lateral branch
作者:冯玮1 2 3 金晁翼1 邓加东3 
单位:1. 武汉理工大学 2. 湖北省材料绿色精密成形工程技术研究中心 3. 现代汽车零部件技术湖北省重点实验室 
关键词:铝合金 带侧枝复杂构件 包络成形 成形载荷 金属流线 
分类号:TG312
出版年,卷(期):页码:2022,47(4):141-149
摘要:

 针对带侧枝复杂铝合金构件的几何特点,提出采用包络成形工艺成形该零件,并利用DEFORM-3D软件模拟了其成形过程,分析了等效应变和成形载荷变化特点,并通过DEFORM-3D软件的Flownet功能模拟了该构件包络成形过程中金属流线分布和演变特点,最后通过工艺实验进行了验证。结果表明:带侧枝复杂铝合金构件包络成形过程中,构件上的凸台、侧枝、飞边等结构在包络模和凹模的作用下逐渐成形,构件右侧半圆锥形部分为大变形区,左侧圆柱形部分为小变形区;构件成形载荷在包络成形阶段随着成形时间的增加呈周期性波动,在包络模保压整形阶段,成形载荷随着保压时间的增大,先逐渐减小,然后呈稳定的周期性波动;构件中间区域和右侧半圆锥形区域的金属流线变化较大,凸台处的金属流线存在穿流、涡流和回流现象。通过比较,该构件包络成形的模拟结果与实验结果一致。

 For geometric characteristics of aluminum alloy complex components with lateral branch, the enveloping forming process was proposed to form the components, and its forming process was simulated by software DEFORM-3D. Then, the change characteristics of effective strain and forming load were analyzed, and the distribution and evolution characteristics of  metal streamlines were simulated in the enveloping forming process of the components by the Flownet function of software DEFORM-3D. Finally, the experiment was carried out to verify the simulation results. The results show that in the enveloping forming process of the aluminum alloy complex components with lateral branch, the structures such as bosses, lateral branches and flashes on the components are gradually formed by the action of enveloping die and concave die. The semi-conical part on the right side of the component is a large deformation area, and the cylindrical part on the left side is a small deformation area. The forming load of the component fluctuates periodically with the increasing of forming time in the enveloping forming stage, and the forming load decreases gradually with the increasing of holding time and then presents a stable periodic fluctuation in the enveloping die holding and shaping stage. The metal streamlines in the middle area and the semi-conical area on the right side of the component vary greatly, and the metal streamlines appear through-flow, eddy-flow and backflow phenomenon at the boss. By comparison, the simulation results are in good agreement with the experimental results. 

 
基金项目:
国家自然科学基金资助项目(51805391);高等学校学科创新引智计划资助项目(B17034);教育部创新团队发展计划项目(IRT_17R83)
作者简介:
作者简介:冯玮(1973-),女,博士,副教授,硕士生导师 E-mail:fw7757@sina.com
参考文献:

 [1]李飞, 孔振, 杨力祥, 等. 镁合金电子舱体浇注系统设计与快速熔模铸造[J]. 航天制造技术, 2018,(2):6-10.


Li F, Kong Z, Yang L X, et al. Rapid investment casting process for electronic cabin of magnesium alloy based on 3D printing technology[J]. Aerospace Manufacturing Technology, 2018,(2):6-10.

[2]邵青, 何宇廷, 张腾, 等. 铝合金搅拌摩擦焊接加筋板剪切稳定性能研究[J]. 机械工程学报, 2014, 50(20):93-99.

Shao Q, He Y T, Zhang T, et al. Study on stability performance of friction stir welded aluminum alloy stiffened panel under shear load[J]. Journal of Mechanical Engineering, 2014, 50(20):93-99.

[3]王毅恒, 赵磊, 万康, 等. 摆动辗压技术概述[J]. 科学技术创新, 2018, (9):176-177.

Wang Y H, Zhao L, Wan K, et al. Overview of rotary rolling technology[J]. Scientific and Technological Innovation, 2018, (9):176-177.

[4]伍太宾, 胡亚民. 冷摆辗精密成形[M]. 北京:机械工业出版社, 2011.

Wu T B, Hu Y M. Cold Rotary Forging Precision Forming[M]. Beijing: China Machine Press, 2011.

[5]董丽颖. 直齿锥齿轮冷摆辗宏观变形与微观组织研究[D]. 武汉:武汉理工大学, 2015.

Dong L Y. Research on Deformation and Microstructure of Cold Orbital Forging of a Spur Bevel Gears [D]. Wuhan: Wuhan University of Technology, 2015.

[6]Hetzel A, Merklein M, Lechner M. Enhancement of the forming limits for orbital formed tailored blanks by local short-term heat treatment[J]. Procedia Manufacturing, 2020, 47:1197-1202.

[7]Han X H, Hua L, Zhuang W H, et al. Process design and control in cold rotary forging of non-rotary gear parts[J].Journal of Materials Processing Technology, 2014, 214(11): 2402-2416.

[8]Han X H, Hu Y X, Hua L. Cold orbital forging of gear rack[J]. International Journal of Mechanical Sciences, 2016, 117: 227-242.

[9]Han X H, Hua L, Peng L, et al. An innovative radial envelope forming method for manufacturing thin-walled cylindrical ring with inner web ribs [J]. Journal of Materials Processing Technology, 2020, 286: 116836.

[10]韩星会, 华林,杨思伟,等. 一种直线轨迹下空间包络成形包络模精确设计方法[P].中国: CN201911175514.X, 2020-05-05.

Han X H, Hua L, Yang S W, et al. An accurate design method of envelope die for space envelope forming under linear trajectory [P]. China: CN201911175514.X, 2020-05-05.

[11]宋寅哲,金城旭,任靖日,等. 基于仿真金属流线的冷锻表面粗糙带预测及改进[J]. 塑性工程学报, 2019, 26(4):55-60.

Song Y Z, Jin C X, Ren J R, et al. Prediction and improvement of rough band of cold forging surface based on simulated metal flow lines[J]. Journal of Plasticity Engineering, 2019, 26(4):55-60.

[12]王辉平. 盘形滚刀刀圈锻造金属流线数值模拟研究[J]. 硬质合金, 2017, 34(4):249-253.

Wang H P. Numerical simulation on metal streamline of forged disc cutter ring[J]. Cemented Carbide, 2017, 34(4):249-253.

[13]张玉勋, 易幼平,李云,等. 铝合金机轮轮毂锻造流线仿真与实验研究[J]. 中南大学学报:自然科学版, 2011, 42(7):1967-1972.

Zhang Y X, Yi Y P, Li Y, et al. Simulation and experiment research on forging flow lines for aluminum alloy wheel-hub[J]. Journal of Central South University: Science and Technology,2011, 42(7):1967-1972.

[14]周梦娟, 冯玮. 圆柱螺旋齿轮热精锻过程齿变形规律的研究[J]. 热加工工艺, 2020, 49(7):84-88.

Zhou M J, Feng W. Study on tooth deformation law of cylindrical helical gear during hot precision forging[J]. Hot Working Technology, 2020, 49(7):84-88.

[15]苗站, 张治民,于建民,等. 不同参数对铝合金枝杈类构件金属流线的影响及优化[J]. 锻压技术,2021,46(2):105-110.

Miao Z,Zhang Z M,Yu J M,et al. Influence of different parameters on metal streamline of aluminum alloy part with branch and optimization [J]. Forging & Stamping Technology,2021,46(2):105-110.

[16]王琪, 朱鲲捷,陶丽佳,等. 基于Deform汽车内水套的热压成形工艺优化[J]. 锻压技术, 2020, 45(8):16-22,31.

Wang Q, Zhu K J, Tao L J, et al. Optimization on hot pressing process of automobile inner water jacket based on Deform[J]. Forging & Stamping Technology, 2020, 45(8):16-22,31.

[17]Shan D B, Zhang Y Q, Wang Y,et al. Defect analysis of complex-shape aluminum alloy forging [J]. Trans. Nonferrous Met. Soc. China, 2006, 16: s1574-s1579.

[18]Zhang Y Q, Shan D B, Xu F C. Flow lines control of disk structure with complex shape in isothermal precision forging[J]. Journal of Materials Processing Technology, 2009, 209(2): 745-753. 

[19]Zheng Y, Liu D, Zhang Z, et al. The flow line evolution of hot open ACDR process for titanium alloy discs [J]. Archives of Civil and Mechanical Engineering, 2017, 17(4): 827-838.

[20]Xin X,Gabriela V,Pereira A B,et al. Assessment of metal flow balance in multi-output porthole hot extrusion of AA6060 thin-walled profile[J]. Metals, 2018, 8(6):462.

[21]韩星会, 华林, 金晁翼,等. 一种离合器外毂构件的空间包络成形方法[P]. 中国:CN110918846A,2020-03-27.

Han X H, Hua L, Jin C Y, et al. A spatial envelope forming method for outer hub component of clutch [P]. China:CN110918846A,2020-03-27.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9