网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
涡旋盘精密模锻成形
英文标题:Precision die forging for scroll
作者:谭群燕1 周昊奕1 2 丁明明1 2 陶惠敏2 沈铖1 2 
单位:1. 华北水利水电大学 机械学院 2. 浙江水利水电学院 机械与汽车工程学院 
关键词:涡旋盘 流动控制成形 背压阻尼 纵向分流腔 精密模锻 
分类号:TG316
出版年,卷(期):页码:2022,47(4):37-42
摘要:

 以涡旋盘动盘为研究对象,基于流动控制成形技术提出在凹模中分别添加背压阻尼和分流腔的两种成形工艺方案,通过DEFORM-3D软件对两种成形工艺方案进行数值模拟和试验验证。模拟结果表明:采用背压结构,涡旋盘金属的流动性更好,但所需成形载荷较大,且凹模的等效应力和变形量较大;采用分流腔结构,所需成形载荷更小,凹模的等效应力和变形量更小,同时涡旋盘的成形效果较好。结合模拟结果,利用添加分流腔后的模具结构进行涡旋盘精密模锻成形,得到的涡旋盘质量较好,端面填充饱满,未出现折叠、裂纹、压伤等缺陷,验证了此成形工艺的可行性。

 

 For the scroll, based on the flow control forming (FCF) technology, two forming process schemes of adding back pressure damping and splitter cavity in the die were proposed, and the two forming process schemes were numerically simulated by software DEFORM-3D and verified by experiments. The simulation results show that with the back pressure structure, the metal fluidity of the scroll is better, but the required forming load is larger, and the equivalent stress and deformation amount of the die are larger. However, with the splitter cavity structure, the required forming load is smaller, the equivalent stress and deformation amount of the die are smaller, and the forming effect of the scroll is better. Combined with the simulation results, the precision die forging of the scroll was conducted by the die structure with the splitter cavity, and the quality of the scroll was good with well-filled end faces and without defects such as folding, crack and crush. Thus, the feasibility of the above forming process is verified.

基金项目:
浙江省重点研发计划项目(2020C01062)
作者简介:
作者简介:谭群燕(1964-),女,学士,教授 E-mail:tqy@ncwu.edu.cn 通信作者:丁明明(1964-),男,硕士,教授 E-mail:dingliumingming@163.com
参考文献:

 [1]郭刚. 变截面涡旋盘铣削参数与齿变形规律研究[J].机械设计与制造工程, 2021, 50(7): 24-28.


Guo G. Study on milling parameters and tooth deformation law of variable cross-section scroll plates[J]. Machine Design and Manufacturing Engineering, 2021, 50(7): 24-28.

[2]郭刚. 变截面涡旋盘高速铣削关键参数及实验研究[D]. 兰州:兰州理工大学,2019.

Guo G. Key Parameters and Experimental Research of High-speed Milling of Variable Cross-section Scroll[D]. Lanzhou: Lanzhou University of Technology, 2019.

[3]吴涛, 段自豪, 石文超, 等. 空调压缩机用静涡旋盘成形工艺优化[J]. 锻造与冲压, 2019, (9): 65-68.

Wu T, Duan Z H, Shi W C, et al. Optimization of static scroll forming process for air conditioning compressor[J]. Forging & Metalforming, 2019, (9): 65-68.

[4]吴进, 王成勇, 何大宏, 等. 背压加载方式对轻量化压缩机涡旋盘成形质量的影响[J]. 塑性工程学报, 2021, 28(1): 77-84.

Wu J,Wang C Y,He D H,et al. Influence of back pressure loading mode on forming quality of lightweight compressor scroll[J]. Journal of Plasticity Engineering, 2021, 28(1): 77-84.

[5]夏巨谌, 张茂, 金俊松, 等. 闭式模锻成形理论及其关键技术研究[J]. 塑性工程学报, 2018, 25(5): 1-10.

Xia J C, Zhang M, Jin J S, et al. Study on forming theory and key technology of close-die forging[J]. Journal of Plasticity Engineering, 2018, 25(5): 1-10.

[6]付传锋, 李月明, 陈胜, 等. 高速动车组钢质制动盘精密模锻研究[J]. 锻压技术, 2021, 46(6): 64-71.

Fu C F, Li Y M, Chen S, et al. Research on precision die forging of steel brake discs for high-speed EMUs[J]. Forging & Stamping Technology, 2021, 46(6): 64-71.

[7]时迎宾, 薛世博, 段园培, 等. 新能源汽车4032铝合金涡旋件背压成形数值模拟与实验研究[J]. 精密成形工程, 2020, (5): 88-92.

Shi Y B, Xue S B, Duan Y P, et al. Numerical simulation and experimental study on back pressure forming of new energy vehicle 4032 aluminum alloy scroll [J]. Journal of Netshape Forming Engineering, 2020, (5): 88-92.

[8]魏科, 马庆, 徐勇, 等.大型/复杂模锻件省力成形工艺研究进展[J]. 塑性工程学报, 2021, (5): 166-182.

Wei K, Ma Q, Xu Y, et al. Research progress of less-loading forming technology for large-sized/complex die forgings[J]. Journal of Plasticity Engineering, 2021, (5): 166-182.

[9]卜军伟, 蔡云. 基于DEFORM的直齿圆柱齿轮精锻工艺[J]. 锻压技术, 2021, 46(11): 43-48.

Bu J W, Cai Y. Effect of precision forging process for spur gear based on DEFORM[J]. Forging & Stamping Technology, 2021, 46(5): 43-48.

[10]张旭峰, 王强, 张治民, 等. 变形参数对旋转反挤压大塑性变形金属流动的影响[J]. 热加工工艺, 2021, 50(5): 72-75.

Zhang X F, Wang Q, Zhang Z M, et al. Effect of deformation parameters on metal flow in large plastic deformation of rotary backward extrusion[J]. Hot Working Technology, 2021, 50(5): 72-75.

[11]王鹏, 龚小涛, 吕学春. TC6钛合金叶片精锻工艺及模具变形补偿设计[J]. 锻压技术, 2021, 45(6): 48-53.

Wang P, Gong X T, Lyu X C. Precision forging process and design on mold deformation compensation for TC6 titanium alloy blade [J]. Forging & Stamping Technology, 2021, 45(6): 48-53.

[12]姜鼎. 变壁厚静涡旋盘背压成形工艺优化研究[D]. 镇江: 江苏大学, 2020.

Jiang D. Study on Back Pressure Forming Process Optimization of Variable Wall Thickness Fixed Scroll [D]. Zhenjiang: Jiangsu University, 2020.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9