网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
两种不同初始组织BT25y钛合金的温度敏感性对比
英文标题:Comparison on temperature sensitivities for BT25y titanium alloy with two different initial microstructures
作者:杨雪梅1 闫学伟1 史晓楠2 郭鸿镇3 
单位:1.郑州航空工业管理学院 航空工程学院 郑州航空工业管理学院 民航学院 3.西北工业大学 材料学院 
关键词:BT25y钛合金 初始片层组织 初始等轴组织 力学行为 温度敏感性 
分类号:
出版年,卷(期):页码:2022,47(3):211-218
摘要:

 基于热模拟压缩试验研究了初始片层组织/初始等轴组织BT25y钛合金的温度敏感性。结果表明:变形温度对两种不同初始组织BT25y钛合金的流动应力均具有显著影响,两相区低温变形时初始片层组织BT25y钛合金的流动应力明显大于初始等轴组织,初始片层组织主要的软化机制为动态球化,初始等轴组织发生α相的动态再结晶,两种不同初始组织在β单相区变形时均发生β相的动态再结晶。温度敏感性分析显示:初始片层组织BT25y钛合金的温度敏感性指数s随变形温度和应变速率的升高而减弱,在低温(850~880 ℃)、低应变速率(0.001~0.01 s-1)变形时表现出最大的温度敏感性;初始等轴组织BT25y钛合金的s值随变形温度的升高整体上呈减小趋势,随应变速率的变化情况则受控于变形温度。

 The temperature sensitivities of BT25y titanium alloys with initial lamellar microstructure and initial equiaxed microstructures were studied by thermal simulation compression test. The results show that the deformation temperature has a significant effect on the flow stresses of BT25y titanium alloys with two kinds of initial microstructures, and the flow stress of BT25y titanium alloy with initial lamellar microstructure is obviously greater than that of BT25y titanium alloy with initial equiaxed microstructure at low deformation temperature in two-phase region. The main softening mechanism in initial lamellar microstructure is dynamic globularization, the dynamic recrystallization of α phase occurs in initial equiaxed microstructure, and the dynamic recrystallization of β phase occurs in both initial microstructures when deforming in β phase region. Temperature sensitivity analysis shows that the temperature sensitivity exponent s of BT25y titanium alloy with initial lamellar microstructure decreases with the increasing of deformation temperature and strain rate and achieves the maximum value when deforming at the low temperature of 850-880 and the small strain rate of 0.001-0.01 s-1, and the s value of BT25y titanium alloy with initial equiaxed microstructure decreases generally with the increasing of deformation temperature, while the change condition with the strain rate is controlled by the deformation temperature.

基金项目:
国家自然科学基金资助项目(51904276);河南省高等学校重点科研项目计划(20A430032);河南省重点研发与推广专项(202102210212)
作者简介:
杨雪梅(1989-),女,博士,讲师 E-mail:yangxuemei@mail.nwpu.edu.cn
参考文献:

 [1]高峻, 罗皎, 李淼泉. 航空发动机双性能盘制造技术与机理的研究进展[J]. 航空材料学报, 2012, 32(6): 37-43.


 


Gao J, Luo J, Li M Q. Advance in manufacture technology and mechanism of aero-engine dual property disk [J]. Journal of Aeronautical Materials, 2012, 32(6): 37-43.


 


[2]Yang X M, Zhao Z L, Ning Y Q, et al. Microstructural evolution and mechanical property of isothermally forged BT25y titanium alloy with different double-annealing processes [J]. Materials Science & Engineering A, 2019, 745: 240-251.


 


[3]Yang X M, Guo H Z, Yao Z K, et al. Effect of isothermal forging strain rate on microstructures and mechanical properties of BT25y titanium alloy [J]. Materials Science & Engineering A, 2016, 673: 355-361.


 


[4]蔺永诚, 肖逸伟, 丁永峰, . TC系列钛合金锻造及组织性能调控工艺研究进展[J]. 锻压技术, 2021, 46(9): 22-33.


 


Lin Y C, Xiao Y W, Ding Y F, et al. Research progress on forging and control technology of microstructure and performance for TC series titanium alloys [J]. Forging & Stamping Technology, 2021, 46(9): 22-33.


 


[5]Guo B Q, Aranas C, Foul A, et al. Effect of multipass deformation at elevated temperatures on the flow behavior and microstructural evolution in Ti-6Al-4V [J]. Materials Science & Engineering A, 2018, 729: 119-124.


 


[6]刘章光, 李建辉, 李培杰, . Ti-55钛合金板材的超塑性变形及组织演变[J]. 稀有金属, 2017, 41(12): 1285-1292.


 


Liu Z G, Li J H, Li P J, et al. Superplastic deformation and microstructure evolution of Ti-55 alloy sheet [J]. Chinese Journal of Rare Metals, 2017, 41(12): 1285-1292.


 


[7]贾宝华, 刘翔, 顾永强, . Ti-1100铸态合金的变形行为及本构模型研究[J]. 稀有金属, 2020, 44(10): 1019-1028.


 


Jia B H, Liu X, Gu Y Q, et al. Deformation behavior and constitutive model of Ti-1100 as-cast alloy [J]. Chinese Journal of Rare Metals, 2020, 44(10): 1019-1028.


 


[8]李鸿江, 于洋, 宋晓云, . 新型Ti-6554钛合金热变形行为及热加工图[J]. 稀有金属, 2020, 44(5): 462-468.


 


Li H J, Yu Y, Song X Y, et al. Thermal deformation behavior and processing map of a new type of Ti-6554 alloy [J]. Chinese Journal of Rare Metals, 2020, 44(5): 462-468.


 


[9]韩言, 赵飞, 万明攀, . TC17钛合金热流变行为及组织演变机制研究[J]. 稀有金属, 2020, 44(3): 234-241.


 


Han Y, Zhao M, Wan M P, et al. Thermal flow behaviors and microstructure evolution of TC17 alloy [J]. Chinese Journal of Rare Metals, 2020, 44(3): 234-241.


 


[10]Liu Y H, Ning Y Q, Yang X M, et al. Effect of temperature and strain rate on the workability of FGH4096 superalloy in hot deformation [J]. Materials and Design, 2016, 95: 669-676.


 


[11]李理, 周楠. EW94耐热镁合金板材热拉延能力的试验研究[J]. 航空材料学报, 2013, 33(5): 22-28.


 


Li L, Zhou N. Experimental investigation of hot deep drawability of EW94 heat resistant alloy sheet [J]. Journal of Aeronautical Materials, 2013, 33(5): 22-28.


 


[12]López J G, Peirs J, Verleysen P, et al. Effect of small temperature variations on the tensile behaviour of Ti-6Al-4V[J]. Procedia Engineering, 2011, 10(7): 2330-2335.


 


[13]Hao F, Xiao J F, Feng Y, et al. Tensile deformation behavior of a near-α titanium alloy Ti-6Al-2Zr-1Mo-1V under a wide temperature range [J]. Journal of Materials Research and Technology, 2020, 9(3): 2818-2831.


 


[14]Hu Y J, Huo Y M, He T. Mechanical behavior and microstructure evolution of TC4 alloy during high temperature plastic deformation [J]. Procedia Manufacturing, 2020, 50: 642-646.


 

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9